Araştırma Makalesi
BibTex RIS Kaynak Göster

Çelik Çerçevedeki Geometrik Ön Kusurların Performansa Etkisi

Yıl 2021, , 197 - 203, 30.12.2021
https://doi.org/10.47769/izufbed.1004776

Öz

Çelik yapılar, eleman ya da sistem bazında kusurlu olabilmektedirler. Yapısal stabilite ve imalat açısından kusurların geometrik tolerans aralığında kalması gerekir. Çalışmada düzlem çelik çerçeve için üç farklı geometrik ön kusur durumu incelenmiştir. Doğrusal olmayan dinamik analiz yapılarak çerçevelerin performans eğrileri oluşturulmuştur. Çerçeveler, maksimum çatı deplasmanına ulaşılıncaya kadar analiz edilmişlerdir. Plastik mafsal noktalarındaki hasar performans düzeyleri ve performans eğrileri üzerinden karşılaştırma yapılmıştır. Senaryo 1 ve 2’ deki göçme durumu, kiriş mekanizması şeklinde gerçekleşmiştir. Senaryo 3 ve 4’ deki göçme durumu, çerçeve mekanizması şeklinde gerçekleşmiştir. Senaryo 1 ve 2 çerçevelerindeki hasar performans düzeylerinin aynı olduğu belirlenmiştir. Senaryo 3 ve 4 çerçevelerindeki hasar performans düzeylerinin aynı olduğu belirlenmiştir. Kusurların, çerçeve performansını minör olarak olumsuz etkilediği ve tolere edilebilir olduğu tespit edilmiştir.

Kaynakça

  • TS EN 1090-2. (2018). Çelik ve alüminyum yapı uygulamaları- bölüm 2: Çelik yapılar için teknik gerekler. Türk Standartları Enstitüsü, Ankara, Türkiye, 207 s.
  • ÇYTHYDE. (2018). Çelik yapıların tasarım, hesap ve yapım esaslarına dair yönetmelikte değişiklik yapılmasına dair yönetmelik. Çevre ve Şehircilik Bakanlığı, Ankara, Türkiye, 246 s.
  • EN 1090-2. (2018). Execution of steel structures and aluminium structures - part 2: Technical requirements for steel structures. European Standards, Brussels. 208 s.
  • YÇİTŞ. (2007). Yapı çeliği işleri teknik şartnamesi. Türk Yapısal Çelik Derneği. Teknik Yayınlar Serisi – 3, İstanbul, Türkiye, 92 s.
  • NSSS. (2020). National structural steelwork specification for building construction. 7th Edition. British Constructional Steelwork Association, London, United Kingdom. 131 s. ISBN 13: 978-1-85073-072-9.
  • ANSI 303-16. (2016). Code of standard practice for steel buildings and bridges. American Institute of Steel Construction, Chicago, Illinois, USA, 82 s.
  • Coleman, R., Ding, X., Rotter, J. M. (1992). Measurement of imperfections in full-scale steel silos. National Conference Publication - Institution of Engineers, Australia, 2(92 pt 7), 467-472.
  • Gu, J., Chan, Siu-Lai. (2005). Second‐order analysis and design of steel structures allowing for member and frame imperfections. International Journal for Numerical Methods in Engineering. 62. 601 - 615, doi: 10.1002/nme.1182.
  • Shayan, S., Rasmussen, K., Zhang, Hao. (2014). On the modelling of initial geometric imperfections of steel frames in advanced analysis. Journal of Constructional Steel Research. 98. 167–177, doi: 10.1016/j.jcsr.2014.02.016.
  • Altekin, M., Yükseler, R.F., (2007). İlkel kusurlu dairesel plakları geometrik doğrusal olmayan analizi, 15. Ulusal Mekanik Kongresi, 3-7 Eylül 2007, Isparta, Türkiye, 77-86.
  • Yaman, Z.D., Eryılmaz, D.M., Aktaş, M., Elmas M. (2009). Doğrusal olmayan sonlu elemanlar analizinde çelik eğilme elemanlarının geometrik kusurlarının tanımlanması, Uluslararası Sakarya Deprem Sempozyumu, 1-2 Ekim 2009, Sakarya, 565-575.
  • Aydın, E., Aktaş, M. (2011). İnce plakların burkulmasında geometrik kusurların etkisi. Engineering Science, 6(4), 1371- 1378, doi: 10.12739/nwsaes.v6i4.5000066949.
  • Kala, Z. (2012). Geometrically non-linear finite element reliability analysis of steelplane frames with initial imperfections. Journal of Civil Engineering and Management, 18(1), 81- 90, doi: 10.3846/13923730.2012.655306.
  • Šmak, M., Straka, B. (2012). Geometrical and structural imperfections of steel member systems. Procedia Engineering. 40. 434 – 439, doi:10.1016/j.proeng.2012.07.121.
  • Kala, Z. (2015) Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections, Journal of Civil Engineering and Management, 21(7), 902-911, doi: 10.3846/13923730.2014.971130.
  • Chen, G., Zhang, H., Rasmussen, K., Fan, F. (2016). Modeling geometric imperfections for reticulated shell structures using random field theory. Engineering Structures. 126, 481-489, doi: 10.1016/j.engstruct.2016.08.008.
  • Zabojszcza, P., Radoń, U. (2019). The Impact of node location imperfections on the reliability of single-layer steel domes. Applied Sciences. 9, 2742, doi:10.3390/app9132742.
  • Wang, J., Li, H., Fu, X., Li, Q. (2021). Geometric imperfections and ultimate capacity analysis of a steel lattice transmission tower. Journal of Constructional Steel Research. 183, doi: 10.1016/j.jcsr.2021.106734.
  • Reference Manual. (2021). For SAP2000®, Etabs®, and Safe® Berkeley, California, USA.
  • Wong, B.W. (2009). Plastic Analysis and Design of Steel Structures (1 st ed.), Butterworth-Heinemann, Elsevier.
  • Chan, S.L. and Chui, P.P.T. (2000) Non-Linear Static And Cyclic Analysis of Steel Frames With Semi-Rijid Connections, Elsevier Science.
  • Lindeburg, M.R. and Baradar, M. (2001). Seismic Design of Building Structures : A Professional's Introduction to Earthquake Forces and Design Details (8th ed.), Professional Publications, Inc. Belmont.
  • FEMA 356., 2000, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Reston, Virginia, USA.
  • ASCE 41-06., 2007, Seismic Evaluation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia, USA.
  • ASCE 41-13., 2014, Seismic Evaluation and Retrofit of Existing Building, American Society of Civil Engineers, Reston, Virginia, USA.
  • ASCE 41-17., 2017, Seismic Evaluation and Retrofit of Existing Building, American Society of Civil Engineers, Reston, Virginia, USA.
  • Sap2000., 2021, Structural Analysis and Design Program. Educational Version, V23, Computers & Structures Inc., Berkeley, California, USA.
  • EN 1993-1-1., 2014, Eurocode 3: Design of structures – Part 1-1: General rules and rules for building. European Committee for Standardization, Brussel.
  • EN 10025-2., 2019, Hot rolled products of structural steels- Part 2: Technical delivery conditions for non-alloy structural steels. European Committee for Standardization, Brussel.

The Effect of Initial Geometric Imperfections in Steel Frame on Performance

Yıl 2021, , 197 - 203, 30.12.2021
https://doi.org/10.47769/izufbed.1004776

Öz

Steel structures can be imperfect that the basis of members or systems. In terms of structural stability and construction, imperfections must remain within the geometric tolerance range. In this study, three different initial geometric imperfection cases have been investigated for steel plane frame. By solving nonlinear dynamic analysis, performance curves of frames were occurred. The frames were analyzed until maximum roof displacement was reached. The comparison has been made via damage performance levels at plastic hinge joints and performance curves. Collapse status in Senario 1 and 2 has been realized in the form of beam mechanism. Collapse status in Senario 3 and 4 has been realized in the form of frame mechanism. Damage performance levels in frames of Senario 1 and 2 were determined to be the same. Damage performance levels in frames of Senario 3 and 4 were determined to be the same. Imperfections have been found to have a minor negative effect on frame performance and to be tolerable.

Kaynakça

  • TS EN 1090-2. (2018). Çelik ve alüminyum yapı uygulamaları- bölüm 2: Çelik yapılar için teknik gerekler. Türk Standartları Enstitüsü, Ankara, Türkiye, 207 s.
  • ÇYTHYDE. (2018). Çelik yapıların tasarım, hesap ve yapım esaslarına dair yönetmelikte değişiklik yapılmasına dair yönetmelik. Çevre ve Şehircilik Bakanlığı, Ankara, Türkiye, 246 s.
  • EN 1090-2. (2018). Execution of steel structures and aluminium structures - part 2: Technical requirements for steel structures. European Standards, Brussels. 208 s.
  • YÇİTŞ. (2007). Yapı çeliği işleri teknik şartnamesi. Türk Yapısal Çelik Derneği. Teknik Yayınlar Serisi – 3, İstanbul, Türkiye, 92 s.
  • NSSS. (2020). National structural steelwork specification for building construction. 7th Edition. British Constructional Steelwork Association, London, United Kingdom. 131 s. ISBN 13: 978-1-85073-072-9.
  • ANSI 303-16. (2016). Code of standard practice for steel buildings and bridges. American Institute of Steel Construction, Chicago, Illinois, USA, 82 s.
  • Coleman, R., Ding, X., Rotter, J. M. (1992). Measurement of imperfections in full-scale steel silos. National Conference Publication - Institution of Engineers, Australia, 2(92 pt 7), 467-472.
  • Gu, J., Chan, Siu-Lai. (2005). Second‐order analysis and design of steel structures allowing for member and frame imperfections. International Journal for Numerical Methods in Engineering. 62. 601 - 615, doi: 10.1002/nme.1182.
  • Shayan, S., Rasmussen, K., Zhang, Hao. (2014). On the modelling of initial geometric imperfections of steel frames in advanced analysis. Journal of Constructional Steel Research. 98. 167–177, doi: 10.1016/j.jcsr.2014.02.016.
  • Altekin, M., Yükseler, R.F., (2007). İlkel kusurlu dairesel plakları geometrik doğrusal olmayan analizi, 15. Ulusal Mekanik Kongresi, 3-7 Eylül 2007, Isparta, Türkiye, 77-86.
  • Yaman, Z.D., Eryılmaz, D.M., Aktaş, M., Elmas M. (2009). Doğrusal olmayan sonlu elemanlar analizinde çelik eğilme elemanlarının geometrik kusurlarının tanımlanması, Uluslararası Sakarya Deprem Sempozyumu, 1-2 Ekim 2009, Sakarya, 565-575.
  • Aydın, E., Aktaş, M. (2011). İnce plakların burkulmasında geometrik kusurların etkisi. Engineering Science, 6(4), 1371- 1378, doi: 10.12739/nwsaes.v6i4.5000066949.
  • Kala, Z. (2012). Geometrically non-linear finite element reliability analysis of steelplane frames with initial imperfections. Journal of Civil Engineering and Management, 18(1), 81- 90, doi: 10.3846/13923730.2012.655306.
  • Šmak, M., Straka, B. (2012). Geometrical and structural imperfections of steel member systems. Procedia Engineering. 40. 434 – 439, doi:10.1016/j.proeng.2012.07.121.
  • Kala, Z. (2015) Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections, Journal of Civil Engineering and Management, 21(7), 902-911, doi: 10.3846/13923730.2014.971130.
  • Chen, G., Zhang, H., Rasmussen, K., Fan, F. (2016). Modeling geometric imperfections for reticulated shell structures using random field theory. Engineering Structures. 126, 481-489, doi: 10.1016/j.engstruct.2016.08.008.
  • Zabojszcza, P., Radoń, U. (2019). The Impact of node location imperfections on the reliability of single-layer steel domes. Applied Sciences. 9, 2742, doi:10.3390/app9132742.
  • Wang, J., Li, H., Fu, X., Li, Q. (2021). Geometric imperfections and ultimate capacity analysis of a steel lattice transmission tower. Journal of Constructional Steel Research. 183, doi: 10.1016/j.jcsr.2021.106734.
  • Reference Manual. (2021). For SAP2000®, Etabs®, and Safe® Berkeley, California, USA.
  • Wong, B.W. (2009). Plastic Analysis and Design of Steel Structures (1 st ed.), Butterworth-Heinemann, Elsevier.
  • Chan, S.L. and Chui, P.P.T. (2000) Non-Linear Static And Cyclic Analysis of Steel Frames With Semi-Rijid Connections, Elsevier Science.
  • Lindeburg, M.R. and Baradar, M. (2001). Seismic Design of Building Structures : A Professional's Introduction to Earthquake Forces and Design Details (8th ed.), Professional Publications, Inc. Belmont.
  • FEMA 356., 2000, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Reston, Virginia, USA.
  • ASCE 41-06., 2007, Seismic Evaluation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia, USA.
  • ASCE 41-13., 2014, Seismic Evaluation and Retrofit of Existing Building, American Society of Civil Engineers, Reston, Virginia, USA.
  • ASCE 41-17., 2017, Seismic Evaluation and Retrofit of Existing Building, American Society of Civil Engineers, Reston, Virginia, USA.
  • Sap2000., 2021, Structural Analysis and Design Program. Educational Version, V23, Computers & Structures Inc., Berkeley, California, USA.
  • EN 1993-1-1., 2014, Eurocode 3: Design of structures – Part 1-1: General rules and rules for building. European Committee for Standardization, Brussel.
  • EN 10025-2., 2019, Hot rolled products of structural steels- Part 2: Technical delivery conditions for non-alloy structural steels. European Committee for Standardization, Brussel.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Berker Alıcıoğlu 0000-0003-3735-8201

Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 5 Ekim 2021
Kabul Tarihi 25 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Alıcıoğlu, M. B. (2021). Çelik Çerçevedeki Geometrik Ön Kusurların Performansa Etkisi. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(3), 197-203. https://doi.org/10.47769/izufbed.1004776

20503

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.