Derleme
BibTex RIS Kaynak Göster

Malnütrisyon durumunun saptanmasında makine öğrenmesinin kullanılması

Yıl 2025, Cilt: 5 Sayı: 2, 21 - 31, 29.08.2025

Öz

Bireyin beslenme durumu, vücut kompozisyonu ve fonksiyonel durumunun bir belirleyicisidir. Yetersiz beslenme yaşam kalitesini düşürür, hasta sonuçlarını, mortalite ve morbidite riskini artırır, hastanede kalış süresini ve maliyetleri olumsuz etkiler. Malnütrisyon, enerji, protein ve diğer besin öğelerinin eksikliğinin veya fazlalığının (veya dengesizliğinin) doku/vücut formu (vücut şekli, boyutu ve bileşimi) ve işlevi ile klinik sonuçlar üzerinde ölçülebilir olumsuz etkilere neden olduğu bir beslenme durumudur. Malnütrisyonun erken tanısı için malnütrisyon tarama ve tanı araçlarının geliştirilmesi, hastaların sağlığı, refahı ve uzun vadeli komplikasyonları önlemek için gereklidir. Hastane ortamında kullanılabilecek pek çok beslenme tarama aracı bulunmasına rağmen, en iyi aracın hangisi olduğu konusunda bir fikir birliği bulunmamakta ve tarama uygulamalarına yeterince uyulmadığı için etkin beslenme tedavisine ulaşılamamaktadır. Son yıllarda, makine öğrenimi yöntemleri, klinikte karar vermeye yardımcı olmak ve tedavinin kalitesini, etkinliğini iyileştirmek için birçok tıbbi alanda yaygın olarak uygulanmaktadır. Bu derlemede Pubmed, Google Scholar, Web of Science veri tabanlarında yetersiz beslenme, malnütrisyon, makine öğrenmesi, yapay zeka anahtar kelimeleri ile tarama yapılmıştır ve makine öğrenme yöntemlerinin malnütrisyon tanısında kullanımı incelenmiştir.

Etik Beyan

Bu çalışmada etik kurul onayına ihtiyaç duyulmamıştır.

Destekleyen Kurum

Bu çalışma herhangi bir kurum tarafından desteklenmemiştir

Kaynakça

  • 1. U.S. Department of Agriculture & U.S. Department of Health and Human Services. (2020). Dietary Guidelines for Americans, 2020–2025 (9th ed.). https://www.dietaryguidelines.gov
  • 2. Corkins MR, Guenter P, DiMaria‐Ghalili RA et al. Malnutrition diagnoses in hospitalized patients: United States, 2010. J Parenter Enteral Nutr. 2014;38(2):186-95. https://doi.org/10.1177/0148607113512154
  • 3. White JV, Guenter P, Jensen G et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Acad Nutr Diet. 2012;112(5):730-8. https://doi.org/10.1016/j.jand.2012.03.012
  • 4. Correia MIT, Perman MI, Waitzberg DL. Hospital malnutrition in Latin America: A systematic review. Clin Nutr. 2017;36(4):958-67. https://doi.org/10.1016/j.clnu.2016.06.025
  • 5. Correia MITD. Nutrition screening vs nutrition assessment: what’s the difference? Nutr Clin Pract. 2018;33(1):62-72. https://doi.org/10.1177/0884533617719669
  • 6. Kondrup J, Allison SP, Elia M et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22(4):415-21. https://doi.org/10.1016/S0261-5614(03)00098-0
  • 7. Robinson D, Walker R, Adams S et al. Definition of Terms, Style, and Conventions Used in ASPEN Board of Directors–Approved Documents. ASPEN, May. 2018:1-21. ASPEN-Definition-of-Terms-Style-and-Conventions-Used-in-ASPEN-Board-of-Directors–Approved-Documents.pdf
  • 8. Ukleja A, Freeman KL, Gilbert K et al. Standards for nutrition support. 2010. https://doi.org/10.1177/0884533610374200
  • 9. Stratton RJ, Green CJ, Elia M. Disease-related malnutrition: an evidence-based approach to treatment: Cabi; 2003. https://doi.org/10.1079/9780851996486.0000
  • 10. Cederholm T, Barazzoni R, Austin P et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49-64. https://doi.org/10.1016/j.clnu.2016.09.004
  • 11. Lochs H, Allison S, Meier R et al. Introductory to the ESPEN guidelines on enteral nutrition: terminology, definitions and general topics. Clin Nutr. 2006;25(2):180-6. https://doi.org/10.1016/j.clnu.2006.02.007
  • 12. Sobotka L, Forbes A. Basics in clinical nutrition: Galen; 2019. Erişim adresi: https://ueaeprints.uea.ac.uk/id/eprint/72123
  • 13. McWhirter JP, Pennington CR. Incidence and recognition of malnutrition in hospital. Bmj. 1994;308(6934):945-8. https://doi.org/10.1136/bmj.308.6934.945
  • 14. Karahan İ, Çifci A. Malnütrisyonun tanımı ve hastaların yönetimi. J Med Palliat Care. 2020;1(1):5-9. Erişim adresi: https://dergipark.org.tr/en/pub/jompac/issue/53586/684792
  • 15. Jensen GL, Hsiao PY, Wheeler D. Adult nutrition assessment tutorial. Journal of J Parenter Enteral Nutr. 2012;36(3):267-74. https://doi.org/10.1177/0148607112440284
  • 16. Bolayir B, Arik G, Yeşil Y et al. Validation of nutritional risk screening‐2002 in a hospitalized adult population. Nutr Clin Pract. 2019;34(2):297-303. https://doi.org/10.1002/ncp.10082
  • 17. Kruizenga HM, Seidell J, de Vet HC et al. Development and validation of a hospital screening tool for malnutrition: the short nutritional assessment questionnaire (SNAQ©). Clin Nutr. 2005;24(1):75-82. https://doi.org/10.1016/j.clnu.2004.07.015
  • 18. Jeong DH, Hong S-B, Lim C-M et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: a single center retrospective study. Nutrients. 2018;10(7):911. https://doi.org/10.3390/nu10070911
  • 19. Kaiser MJ, Bauer JM, Ramsch C et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. J Nutr Health Aging. 2009;13:782-8. https://doi.org/10.1007/s12603-009-0214-7
  • 20. Knaus WA, Draper EA, Wagner DP et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29. https://doi.org/10.1097/00003246-198510000-00009
  • 21. Bauer J, Capra S, Ferguson M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr. 2002;56(8):779-85. https://doi.org/10.1038/sj.ejcn.1601412
  • 22. Turing AM. Mind. Mind. 1950;59(236):433-60. https://doi.org/10.1093/mind/LIX.236.433
  • 23. Chollet F. Deep learning with Python: Simon and Schuster; 2021. https://doi.org/10.31211/interacoes.n42.2022.r1
  • 24. Nils J. Nilsson Robotics Laboratory Department of Computer Science Stanford University Stanford. Introduction To Machine Learning. 1998. Erişim adresi: https://ai.stanford.edu/~nilsson/MLBOOK.pdf
  • 25. Zilyas D, Yılmaz A. Makine Öğrenmesi Yöntemleri İle Eğitim Başarısının Tahmini Modeli. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2023;14(3):437-47. https://doi.org/10.24012/dumf.1322273
  • 26. Sökmen A. Sosyal Medya Verilerinden Metin Madenciliği Yöntemiyle Rekabet Avantajı Yaratma: Antalya Örneği. Editors/Editörler. 2020:84. Erişim adresi: https://acikerisim.kastamonu.edu.tr/items/8f5fad87-22c9-4dd3-8376-26d2d7e74ba6/full
  • 27. Shi M, Zhang B. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics. 2011;27(21):3017-23. https://doi.org/10.1093/bioinformatics/btr502
  • 28. Smart WD, Kaelbling LP. Effective reinforcement learning for mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat No 02CH37292); 2002: IEEE. https://doi.org/10.1109/robot.2002.1014237
  • 29. Harrington P. Machine Learning in Action: Manning Publications; 2012. Erişim adresi: https://www.manning.com/books/machine-learning-in-action
  • 30. Ayık YZ, Özdemir A, Yavuz U. Lise türü ve lise mezuniyet başarısının, kazanılan fakülte ile ilişkisinin veri madenciliği tekniği ile analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(2), 441-454. Erişim adresi: https://dergipark.org.tr/en/pub/ataunisosbil/issue/2820/38029
  • 31. Breiman L. Random forests. Machine learning. 2001;45:5-32. https://doi.org/10.1023/a:1010933404324
  • 32. Ulgen K. Makine Öğrenimi Bölüm-2 (k-En Yakın Komşuluk). Medium; 2017. Erişim adresi: https://medium.com/@k.ulgen90/makine-öğrenimi-bölüm-2-6d6d120a18e1
  • 33. Dogancay MM. Covid-19 hastaları için Makine öğrenmesi sınıflandırma yöntemleriyle hastalık Evresinin Tahmini: Dokuz Eylul Universitesi (Turkey); 2023. Erişim adresi:https://avesis.deu.edu.tr/yonetilen-tez/4b18c6b5-dab5-48ed-ad46-d2d1785fb0aa/covid-19-hastalari-icin-makine-ogrenmesi-siniflandirma-yontemleriyle-hastalik-evresinin-tahmini
  • 34. Jin BT, Choi MH, Moyer MF et al. Predicting malnutrition from longitudinal patient trajectories with deep learning. PloS one. 2022;17(7):e0271487. https://doi.org/10.1371/journal.pone.0271487
  • 35. Parchure P, Besculides M, Zhan S et al. Malnutrition risk assessment using a machine learning‐based screening tool: A multicentre retrospective cohort. J Hum Nutr Diet. 2024. https://doi.org/10.1111/jhn.13286
  • 36. Talukder A, Ahammed B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition. 2020;78:110861. https://doi.org/10.1016/j.nut.2020.110861
  • 37. Qasrawi R, Sgahir S, Nemer M et al. Machine Learning Approach for Predicting the Impact of Food Insecurity on Nutrient Consumption and Malnutrition in Children Aged 6 Months to 5 Years. Children. 2024;11(7):810. https://doi.org/10.3390/children11070810
  • 38. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920-30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
  • 39. Noorbakhsh-Sabet N, Zand R, Zhang Y et al. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801. https://doi.org/10.1016/j.amjmed.2019.01.017
  • 40. Chen X, Wang W, Xie G et al. Multi-resolution sensitivity analysis of model of immune response to helicobacter pylori infection via spatio-temporal metamodeling. Front Appl Math Stat. 2019;5:4. https://doi.org/10.3389/fams.2019.00004
  • 41. Verma M, Bassaganya-Riera J, Leber A et al. High-resolution computational modeling of immune responses in the gut. GigaScience. 2019;8(6):giz062. https://doi.org/10.1093/gigascience/giz062
  • 42. Di Martino F, Delmastro F, Dolciotti C et al. Malnutrition risk assessment in frail older adults using m-health and machine learning. ICC 2021-IEEE International Conference on Communications; 2021: IEEE. https://doi.org/10.1109/ICC42927.2021.9500471
  • 43. Wang X, Yang F, Zhu M et al. Development and assessment of assisted diagnosis models using machine learning for identifying elderly patients with malnutrition: cohort study. J Med Internet Res. 2023;25:e42435. https://doi.org/10.2196/42435
  • 44. Liou L, Scott E, Parchure P et al. Assessing calibration and bias of a deployed machine learning malnutrition prediction model within a large healthcare system. NPJ Digit Med. 2024;7(1):149. https://doi.org/10.1038/s41746-024-01141-5
  • 45. Jain S, Khanam T, Abedi AJ et al. Efficient Machine Learning for Malnutrition Prediction among under-five children in India. 2022 IEEE Delhi Section Conference (DELCON); 2022: IEEE. https://doi.org/10.1109/delcon54057.2022.9753080

The Use of Machine Learning to Assess Malnutrition Status

Yıl 2025, Cilt: 5 Sayı: 2, 21 - 31, 29.08.2025

Öz

An individual's nutritional status is a determinant of body composition and functional status. Undernourishment reduces quality of life, increases patient outcomes, mortality and morbidity risk, and adversely affects length of hospitalization and costs. Malnutrition is a nutritional state in which a deficiency or excess (or imbalance) of energy, protein and other nutrients causes measurable adverse effects on tissue/body form (body shape, size and composition) and function, and clinical outcomes. The development of malnutrition screening and diagnostic tools for the early detection of malnutrition is essential for the health and well-being of patients and to prevent long-term complications. Although there are many nutritional screening tools that can be used in the hospital setting, there is no consensus on which is the best tool and effective nutritional treatment is not achieved due to poor adherence to screening practices. In recent years, machine learning methods have been widely applied in many medical fields to assist clinical decision-making and improve the quality and effectiveness of treatment. In this review, Pubmed, Google Scholar, Web of Science databases were searched with the keywords undernourishment, malnutrition, machine learning, artificial intelligence and the use of machine learning methods in the diagnosis of malnutrition was examined.

Etik Beyan

Ethics committee approval was not required in this study.

Destekleyen Kurum

This study was not supported by any organization

Kaynakça

  • 1. U.S. Department of Agriculture & U.S. Department of Health and Human Services. (2020). Dietary Guidelines for Americans, 2020–2025 (9th ed.). https://www.dietaryguidelines.gov
  • 2. Corkins MR, Guenter P, DiMaria‐Ghalili RA et al. Malnutrition diagnoses in hospitalized patients: United States, 2010. J Parenter Enteral Nutr. 2014;38(2):186-95. https://doi.org/10.1177/0148607113512154
  • 3. White JV, Guenter P, Jensen G et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Acad Nutr Diet. 2012;112(5):730-8. https://doi.org/10.1016/j.jand.2012.03.012
  • 4. Correia MIT, Perman MI, Waitzberg DL. Hospital malnutrition in Latin America: A systematic review. Clin Nutr. 2017;36(4):958-67. https://doi.org/10.1016/j.clnu.2016.06.025
  • 5. Correia MITD. Nutrition screening vs nutrition assessment: what’s the difference? Nutr Clin Pract. 2018;33(1):62-72. https://doi.org/10.1177/0884533617719669
  • 6. Kondrup J, Allison SP, Elia M et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22(4):415-21. https://doi.org/10.1016/S0261-5614(03)00098-0
  • 7. Robinson D, Walker R, Adams S et al. Definition of Terms, Style, and Conventions Used in ASPEN Board of Directors–Approved Documents. ASPEN, May. 2018:1-21. ASPEN-Definition-of-Terms-Style-and-Conventions-Used-in-ASPEN-Board-of-Directors–Approved-Documents.pdf
  • 8. Ukleja A, Freeman KL, Gilbert K et al. Standards for nutrition support. 2010. https://doi.org/10.1177/0884533610374200
  • 9. Stratton RJ, Green CJ, Elia M. Disease-related malnutrition: an evidence-based approach to treatment: Cabi; 2003. https://doi.org/10.1079/9780851996486.0000
  • 10. Cederholm T, Barazzoni R, Austin P et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49-64. https://doi.org/10.1016/j.clnu.2016.09.004
  • 11. Lochs H, Allison S, Meier R et al. Introductory to the ESPEN guidelines on enteral nutrition: terminology, definitions and general topics. Clin Nutr. 2006;25(2):180-6. https://doi.org/10.1016/j.clnu.2006.02.007
  • 12. Sobotka L, Forbes A. Basics in clinical nutrition: Galen; 2019. Erişim adresi: https://ueaeprints.uea.ac.uk/id/eprint/72123
  • 13. McWhirter JP, Pennington CR. Incidence and recognition of malnutrition in hospital. Bmj. 1994;308(6934):945-8. https://doi.org/10.1136/bmj.308.6934.945
  • 14. Karahan İ, Çifci A. Malnütrisyonun tanımı ve hastaların yönetimi. J Med Palliat Care. 2020;1(1):5-9. Erişim adresi: https://dergipark.org.tr/en/pub/jompac/issue/53586/684792
  • 15. Jensen GL, Hsiao PY, Wheeler D. Adult nutrition assessment tutorial. Journal of J Parenter Enteral Nutr. 2012;36(3):267-74. https://doi.org/10.1177/0148607112440284
  • 16. Bolayir B, Arik G, Yeşil Y et al. Validation of nutritional risk screening‐2002 in a hospitalized adult population. Nutr Clin Pract. 2019;34(2):297-303. https://doi.org/10.1002/ncp.10082
  • 17. Kruizenga HM, Seidell J, de Vet HC et al. Development and validation of a hospital screening tool for malnutrition: the short nutritional assessment questionnaire (SNAQ©). Clin Nutr. 2005;24(1):75-82. https://doi.org/10.1016/j.clnu.2004.07.015
  • 18. Jeong DH, Hong S-B, Lim C-M et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: a single center retrospective study. Nutrients. 2018;10(7):911. https://doi.org/10.3390/nu10070911
  • 19. Kaiser MJ, Bauer JM, Ramsch C et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. J Nutr Health Aging. 2009;13:782-8. https://doi.org/10.1007/s12603-009-0214-7
  • 20. Knaus WA, Draper EA, Wagner DP et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818-29. https://doi.org/10.1097/00003246-198510000-00009
  • 21. Bauer J, Capra S, Ferguson M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr. 2002;56(8):779-85. https://doi.org/10.1038/sj.ejcn.1601412
  • 22. Turing AM. Mind. Mind. 1950;59(236):433-60. https://doi.org/10.1093/mind/LIX.236.433
  • 23. Chollet F. Deep learning with Python: Simon and Schuster; 2021. https://doi.org/10.31211/interacoes.n42.2022.r1
  • 24. Nils J. Nilsson Robotics Laboratory Department of Computer Science Stanford University Stanford. Introduction To Machine Learning. 1998. Erişim adresi: https://ai.stanford.edu/~nilsson/MLBOOK.pdf
  • 25. Zilyas D, Yılmaz A. Makine Öğrenmesi Yöntemleri İle Eğitim Başarısının Tahmini Modeli. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2023;14(3):437-47. https://doi.org/10.24012/dumf.1322273
  • 26. Sökmen A. Sosyal Medya Verilerinden Metin Madenciliği Yöntemiyle Rekabet Avantajı Yaratma: Antalya Örneği. Editors/Editörler. 2020:84. Erişim adresi: https://acikerisim.kastamonu.edu.tr/items/8f5fad87-22c9-4dd3-8376-26d2d7e74ba6/full
  • 27. Shi M, Zhang B. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics. 2011;27(21):3017-23. https://doi.org/10.1093/bioinformatics/btr502
  • 28. Smart WD, Kaelbling LP. Effective reinforcement learning for mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat No 02CH37292); 2002: IEEE. https://doi.org/10.1109/robot.2002.1014237
  • 29. Harrington P. Machine Learning in Action: Manning Publications; 2012. Erişim adresi: https://www.manning.com/books/machine-learning-in-action
  • 30. Ayık YZ, Özdemir A, Yavuz U. Lise türü ve lise mezuniyet başarısının, kazanılan fakülte ile ilişkisinin veri madenciliği tekniği ile analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(2), 441-454. Erişim adresi: https://dergipark.org.tr/en/pub/ataunisosbil/issue/2820/38029
  • 31. Breiman L. Random forests. Machine learning. 2001;45:5-32. https://doi.org/10.1023/a:1010933404324
  • 32. Ulgen K. Makine Öğrenimi Bölüm-2 (k-En Yakın Komşuluk). Medium; 2017. Erişim adresi: https://medium.com/@k.ulgen90/makine-öğrenimi-bölüm-2-6d6d120a18e1
  • 33. Dogancay MM. Covid-19 hastaları için Makine öğrenmesi sınıflandırma yöntemleriyle hastalık Evresinin Tahmini: Dokuz Eylul Universitesi (Turkey); 2023. Erişim adresi:https://avesis.deu.edu.tr/yonetilen-tez/4b18c6b5-dab5-48ed-ad46-d2d1785fb0aa/covid-19-hastalari-icin-makine-ogrenmesi-siniflandirma-yontemleriyle-hastalik-evresinin-tahmini
  • 34. Jin BT, Choi MH, Moyer MF et al. Predicting malnutrition from longitudinal patient trajectories with deep learning. PloS one. 2022;17(7):e0271487. https://doi.org/10.1371/journal.pone.0271487
  • 35. Parchure P, Besculides M, Zhan S et al. Malnutrition risk assessment using a machine learning‐based screening tool: A multicentre retrospective cohort. J Hum Nutr Diet. 2024. https://doi.org/10.1111/jhn.13286
  • 36. Talukder A, Ahammed B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition. 2020;78:110861. https://doi.org/10.1016/j.nut.2020.110861
  • 37. Qasrawi R, Sgahir S, Nemer M et al. Machine Learning Approach for Predicting the Impact of Food Insecurity on Nutrient Consumption and Malnutrition in Children Aged 6 Months to 5 Years. Children. 2024;11(7):810. https://doi.org/10.3390/children11070810
  • 38. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920-30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
  • 39. Noorbakhsh-Sabet N, Zand R, Zhang Y et al. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801. https://doi.org/10.1016/j.amjmed.2019.01.017
  • 40. Chen X, Wang W, Xie G et al. Multi-resolution sensitivity analysis of model of immune response to helicobacter pylori infection via spatio-temporal metamodeling. Front Appl Math Stat. 2019;5:4. https://doi.org/10.3389/fams.2019.00004
  • 41. Verma M, Bassaganya-Riera J, Leber A et al. High-resolution computational modeling of immune responses in the gut. GigaScience. 2019;8(6):giz062. https://doi.org/10.1093/gigascience/giz062
  • 42. Di Martino F, Delmastro F, Dolciotti C et al. Malnutrition risk assessment in frail older adults using m-health and machine learning. ICC 2021-IEEE International Conference on Communications; 2021: IEEE. https://doi.org/10.1109/ICC42927.2021.9500471
  • 43. Wang X, Yang F, Zhu M et al. Development and assessment of assisted diagnosis models using machine learning for identifying elderly patients with malnutrition: cohort study. J Med Internet Res. 2023;25:e42435. https://doi.org/10.2196/42435
  • 44. Liou L, Scott E, Parchure P et al. Assessing calibration and bias of a deployed machine learning malnutrition prediction model within a large healthcare system. NPJ Digit Med. 2024;7(1):149. https://doi.org/10.1038/s41746-024-01141-5
  • 45. Jain S, Khanam T, Abedi AJ et al. Efficient Machine Learning for Malnutrition Prediction among under-five children in India. 2022 IEEE Delhi Section Conference (DELCON); 2022: IEEE. https://doi.org/10.1109/delcon54057.2022.9753080
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlıkta Bilgi İşleme
Bölüm Derlemeler
Yazarlar

Dilay Ermiş 0009-0003-6372-2772

Güleren Sabuncular 0000-0001-5922-295X

Zehra Margot Çelik 0000-0002-4622-9252

Yayımlanma Tarihi 29 Ağustos 2025
Gönderilme Tarihi 7 Mart 2025
Kabul Tarihi 7 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

Vancouver Ermiş D, Sabuncular G, Çelik ZM. Malnütrisyon durumunun saptanmasında makine öğrenmesinin kullanılması. JAIHS. 2025;5(2):21-3.