Araştırma Makalesi
BibTex RIS Kaynak Göster

Kemik defektlerinin tedavisi için β-trikalsiyum fosfat ile birleştirilmiş aljinat ve yumurta kabuğu zarı içeren biyomateryalin değerlendirilmesi

Yıl 2025, Cilt: 37 Sayı: 3, 293 - 298, 24.09.2025
https://doi.org/10.7240/jeps.1703374

Öz

Kemik defektlerinin tedavisi için tasarlanan iskele, dondurarak kurutma yöntemi kullanılarak üretilmiştir. İskelelerin karakterizasyonu fourier transform infrared (FTIR) spektroskopisi ve X-ışını kırınım analizi, şişme ve bozunma oranı, taramalı elektron mikroskobu (SEM) testleri kullanılarak gerçekleştirilmiştir. İskelelerin biyouyumluluğunu analiz etmek için osteoblast hücreleri ile in vitro sitotoksisite deneyi yapılmıştır. Karakterizasyon sonuçları aljinat, yumurta kabuğu membranı ve β-TCP arasında güçlü iyonik etkileşimler ve birbirine bağlı gözenekli yapı olduğunu göstermiştir. Hücre canlılığının %80'den fazla olması iskelelerin toksik olmadığını göstermektedir. Tüm sonuçlar birlikte değerlendirildiğinde, aljinat/yumurta kabuğu zarı içeren β-TCP'nin kemik tedavisi uygulamaları için uygun olduğu düşünülebilir.

Kaynakça

  • Cakmak, A.M., Unal, S., Sahin, A., Oktar, F.N., Sengor, M., Ekren, N., Gunduz, O., & Kalaskar, D.M. (2020). 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers (Basel), 12, 1–14. doi:10.3390/polym12091962.
  • Silva-Barroso, A.S., Cabral, C.S.D., Ferreira, P., Moreira, A.F., & Correia, I.J. (2023). Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration. International Journal of Biological Macromolecules, 239. doi:10.1016/j.ijbiomac.2023.124258.
  • Lin, X., Patil, S., Gao, Y.G., & Qian, A. (2020). The Bone Extracellular Matrix in Bone Formation and Regeneration. Frontiers in Pharmacology, 11, 1–15. doi:10.3389/fphar.2020.00757.
  • Garimella, A., Ghosh, S.B., & Bandyopadhyay-Ghosh, S. (2024). Biomaterials for bone tissue engineering: achievements to date and future directions. Biomedical Materials, 20. doi:10.1088/1748-605X/ad967c.
  • Jia, J., Duan, Y.Y., Yu, J., & Lu, J.W. (2008). Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. Journal of Biomedical Materials Research - Part A, 86, 364–373. doi:10.1002/jbm.a.31606.
  • Farjah, G.H., Mohammdzadeh, S., & Javanmard, M.Z. (2020). The effect of lycopene in egg shell membrane guidance channel on sciatic nerve regeneration in rats. Iranian Journal of Basic Medical Sciences, 23, 527–533. doi:10.22038/ijbms.2020.40228.9525.
  • Adali, T., Kalkan, R., & Karimizarandi, L. (2019). The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. International Journal of Biological Macromolecules, 124, 541–547. doi:10.1016/j.ijbiomac.2018.11.226.
  • Li, X., Cai, Z., Ahn, D.U., & Huang, X. (2019). Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids and Surfaces B: Biointerfaces, 183, 110449. doi:10.1016/j.colsurfb.2019.110449.
  • Ocando, C., Dinescu, S., Samoila, I., Ghitulica, C.D., Cucuruz, A., Costache, M., & Averous, L. (2021). Fabrication and properties of alginate-hydroxyapatite biocomposites as efficient biomaterials for bone regeneration. European Polymer Journal, 151, 110444. doi:10.1016/j.eurpolymj.2021.110444.
  • Afriani, F., Dahlan, K., Nikmatin, S., & Zuas, O. (2015). Alginate Affecting The Characteristics Of Porous Beta-Tcp/Alginate Composite Scaffolds. Journal of Optoelectronics and Biomedical Materials. https://publons.com/publon/31759775/.
  • Liang, L., Hou, T., Ouyang, Q., Xie, L., Zhong, S., Li, P., Li, S., & Li, C. (2020). Antimicrobial sodium alginate dressing immobilized with polydopamine-silver composite nanospheres. Composites Part B: Engineering, 188, 107877. doi:10.1016/j.compositesb.2020.107877.
  • Mohammadzadeh, L., Rahbarghazi, R., Salehi, R., & Mahkam, M. (2019). A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering. Journal of Biological Engineering, 13, 1–15. doi:10.1186/s13036-019-0208-x.
  • Guler, E., Baripoglu, Y.E., Alenezi, H., Arikan, A., Babazade, R., Unal, S., Duruksu, G., Alfares, F.S., Yazir, Y., Oktar, F.N., Gunduz, O., Edirisinghe, M., & Cam, M.E. (2021). Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/B-catenin pathway. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2021.08.196.
  • Algul, D., Sipahi, H., Aydin, A., Kelleci, F., Ozdatli, S., & Yener, F.G. (2015). Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. International Journal of Biological Macromolecules, 79, 363–369. doi:10.1016/j.ijbiomac.2015.05.005.
  • Ghaffari, R., Salimi-Kenari, H., Fahimipour, F., Rabiee, S.M., Adeli, H., & Dashtimoghadam, E. (2020). Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. International Journal of Biological Macromolecules, 148, 434–448. doi:10.1016/j.ijbiomac.2020.01.112.

Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects

Yıl 2025, Cilt: 37 Sayı: 3, 293 - 298, 24.09.2025
https://doi.org/10.7240/jeps.1703374

Öz

The freeze-drying procedure was used to create the scaffold that was meant to cure bone deformities. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, swelling and degradation ratio, and scanning electron microscopy (SEM) tests were used to characterize the scaffolds. Osteoblast cells were used in an in vitro cytotoxicity test to evaluate the scaffolds' biocompatibility. The results of the characterization revealed an interconnected porous structure and significant ionic connections between the alginate, egg-shell membrane, and β-tricalcium phosphate (β-TCP). The scaffolds are regarded as nontoxic because the cell viability was more than 80%. When all the findings are evaluated, β-TCP with alginate/egg-shell membrane can be regarded as appropriate for bone treatment applications.

Kaynakça

  • Cakmak, A.M., Unal, S., Sahin, A., Oktar, F.N., Sengor, M., Ekren, N., Gunduz, O., & Kalaskar, D.M. (2020). 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers (Basel), 12, 1–14. doi:10.3390/polym12091962.
  • Silva-Barroso, A.S., Cabral, C.S.D., Ferreira, P., Moreira, A.F., & Correia, I.J. (2023). Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration. International Journal of Biological Macromolecules, 239. doi:10.1016/j.ijbiomac.2023.124258.
  • Lin, X., Patil, S., Gao, Y.G., & Qian, A. (2020). The Bone Extracellular Matrix in Bone Formation and Regeneration. Frontiers in Pharmacology, 11, 1–15. doi:10.3389/fphar.2020.00757.
  • Garimella, A., Ghosh, S.B., & Bandyopadhyay-Ghosh, S. (2024). Biomaterials for bone tissue engineering: achievements to date and future directions. Biomedical Materials, 20. doi:10.1088/1748-605X/ad967c.
  • Jia, J., Duan, Y.Y., Yu, J., & Lu, J.W. (2008). Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. Journal of Biomedical Materials Research - Part A, 86, 364–373. doi:10.1002/jbm.a.31606.
  • Farjah, G.H., Mohammdzadeh, S., & Javanmard, M.Z. (2020). The effect of lycopene in egg shell membrane guidance channel on sciatic nerve regeneration in rats. Iranian Journal of Basic Medical Sciences, 23, 527–533. doi:10.22038/ijbms.2020.40228.9525.
  • Adali, T., Kalkan, R., & Karimizarandi, L. (2019). The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. International Journal of Biological Macromolecules, 124, 541–547. doi:10.1016/j.ijbiomac.2018.11.226.
  • Li, X., Cai, Z., Ahn, D.U., & Huang, X. (2019). Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids and Surfaces B: Biointerfaces, 183, 110449. doi:10.1016/j.colsurfb.2019.110449.
  • Ocando, C., Dinescu, S., Samoila, I., Ghitulica, C.D., Cucuruz, A., Costache, M., & Averous, L. (2021). Fabrication and properties of alginate-hydroxyapatite biocomposites as efficient biomaterials for bone regeneration. European Polymer Journal, 151, 110444. doi:10.1016/j.eurpolymj.2021.110444.
  • Afriani, F., Dahlan, K., Nikmatin, S., & Zuas, O. (2015). Alginate Affecting The Characteristics Of Porous Beta-Tcp/Alginate Composite Scaffolds. Journal of Optoelectronics and Biomedical Materials. https://publons.com/publon/31759775/.
  • Liang, L., Hou, T., Ouyang, Q., Xie, L., Zhong, S., Li, P., Li, S., & Li, C. (2020). Antimicrobial sodium alginate dressing immobilized with polydopamine-silver composite nanospheres. Composites Part B: Engineering, 188, 107877. doi:10.1016/j.compositesb.2020.107877.
  • Mohammadzadeh, L., Rahbarghazi, R., Salehi, R., & Mahkam, M. (2019). A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering. Journal of Biological Engineering, 13, 1–15. doi:10.1186/s13036-019-0208-x.
  • Guler, E., Baripoglu, Y.E., Alenezi, H., Arikan, A., Babazade, R., Unal, S., Duruksu, G., Alfares, F.S., Yazir, Y., Oktar, F.N., Gunduz, O., Edirisinghe, M., & Cam, M.E. (2021). Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/B-catenin pathway. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2021.08.196.
  • Algul, D., Sipahi, H., Aydin, A., Kelleci, F., Ozdatli, S., & Yener, F.G. (2015). Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. International Journal of Biological Macromolecules, 79, 363–369. doi:10.1016/j.ijbiomac.2015.05.005.
  • Ghaffari, R., Salimi-Kenari, H., Fahimipour, F., Rabiee, S.M., Adeli, H., & Dashtimoghadam, E. (2020). Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. International Journal of Biological Macromolecules, 148, 434–448. doi:10.1016/j.ijbiomac.2020.01.112.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makaleleri
Yazarlar

Semra Unal 0000-0001-9084-9611

Erken Görünüm Tarihi 15 Eylül 2025
Yayımlanma Tarihi 24 Eylül 2025
Gönderilme Tarihi 24 Mayıs 2025
Kabul Tarihi 5 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 3

Kaynak Göster

APA Unal, S. (2025). Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects. International Journal of Advances in Engineering and Pure Sciences, 37(3), 293-298. https://doi.org/10.7240/jeps.1703374
AMA Unal S. Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects. JEPS. Eylül 2025;37(3):293-298. doi:10.7240/jeps.1703374
Chicago Unal, Semra. “Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 3 (Eylül 2025): 293-98. https://doi.org/10.7240/jeps.1703374.
EndNote Unal S (01 Eylül 2025) Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects. International Journal of Advances in Engineering and Pure Sciences 37 3 293–298.
IEEE S. Unal, “Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects”, JEPS, c. 37, sy. 3, ss. 293–298, 2025, doi: 10.7240/jeps.1703374.
ISNAD Unal, Semra. “Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects”. International Journal of Advances in Engineering and Pure Sciences 37/3 (Eylül2025), 293-298. https://doi.org/10.7240/jeps.1703374.
JAMA Unal S. Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects. JEPS. 2025;37:293–298.
MLA Unal, Semra. “Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 3, 2025, ss. 293-8, doi:10.7240/jeps.1703374.
Vancouver Unal S. Evaluation of biomaterial containing alginate and egg-shell membrane incorporated with β-tricalcium phosphate for treatment of bone defects. JEPS. 2025;37(3):293-8.