Aim: Fundus images are very important to diagnose some ophthalmologic disorders. Hence, fundus images have become a very important data source for machine-learning society. Our primary goal is to propose a new automated disorder classification model for diabetic retinopathy (DR) using the strength of deep learning. In this model, our proposed model suggests a treatment technique using fundus images.
Material and Method: In this research, a new dataset was acquired and this dataset contains 1365 Fundus Fluorescein Angiography images with five classes. To detect these disorders automatically, we proposed a transfer learning-based feature engineering model. This feature engineering model uses pretrained MobileNetv2 and nested patch division to extract deep and exemplar features. The neighborhood component analysis (NCA) feature selection function has been applied to choose the top features. k nearest neighbors (kNN) classification function has been used to get results and we used 10-fold cross-validation (CV) to validate the results.
Results: The proposed MobileNetv2 and nested patch-based image classification model attained 87.40% classification accuracy on the collected dataset.
Conclusions: The calculated 87.40% classification accuracy for five classes has been demonstrated high classification accuracy of the proposed deep feature engineering model
Diabetic retinopathy fundus image processing biomedical image classification artificial intelligence
Birincil Dil | İngilizce |
---|---|
Konular | Sağlık Kurumları Yönetimi |
Bölüm | Orijinal Makale |
Yazarlar | |
Yayımlanma Tarihi | 25 Ekim 2022 |
Yayımlandığı Sayı | Yıl 2022 |
Üniversitelerarası Kurul (ÜAK) Eşdeğerliği: Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]
Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.
Not: Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.
Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show
Dergi Dizin ve Platformları
Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.
Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.