In this work, we basically define new sequence spaces using Tribonacci-Lucas numbers. Then, we give some inclusion relations by examining some topological properties of these spaces. We also characterize some matrix classes by calculating the Köthe-Toeplitz duals of our space. Finally, we examine whether our space has geometric properties such as uniform convexity, strict convexity, and superreflexivity.
Başar, F. (2011). Summability Theory and its Applications. Bentham Science Publishers. İstanbul.
Başarır, M., Başar, F., Kara, EE. (2016). On the Spaces of Fibonacci Difference Absolutely p-
Summable, Null and Convergent Sequences. Sarajevo J. Math., 12 (25): 167-182.
Candan, M., Kara, EE. (2015). A Study of Topological and Geometrical Characteristics of New
Banach Sequence Spaces. Gulf J. Math., 3 (4): 67-84.
Catalani, M. (2002). Identities for Tribonacci-related Sequences. Cornell University Library. arXiv:
0209179.
Chandra, P., Tripathy, BC. (2002). On Generalised Köthe-Toeplitz Duals of Some Sequence Spaces.
Indian J. Pure Appl. Math., 33: 1301-1306.
Chidume, CE., (1965). Geometric Properties of Banach Spaces and Non-linear Iterations. Lecture
Notes in Mathematics. Springer-Verlag. Berlin.
Choudary, B., Nanda, S. (1989). Functional Analysis with Applications. Wiley Eastern Limited. New
Delhi.
Dağlı, MC., Yaying, T. (2022). Some new Paranormed Sequence Spaces Derived by Regular
Tribonacci Matrix. The Journal of Analysis, https://doi.org/10.1007/s41478-022-00442-w.
Diestel, J. (1976). Geometry of Banach Spaces-Selected Topics. Lecture notes in Mathematics. Vol.
485. Springer-Verlag. Berlin.
Ercan, S., Bektaş, Ç. (2017). Some Topological and Geometric Properties of a New BK-Space Derived
by Using Regular Matrix of Fibonacci Numbers. Linear and Multilinear Algebra, 65 (5): 909-
921.
Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, 1 (3): 70 – 74.
Frontczak, R. (2018). Sums of Tribonacci and Tribonacci-Lucas Numbers. International Journal of
Mathematical Analysis, 12 (1): 19-24.
Gökçe, F. (2022). Absolute Lucas Spaces with Matrix and Compact Operators. Math. Sci. Appl. Enotes,
10 (1): 27-44.
Gökçe, F., Sarıgöl, MA. (2020). Some Matrix and Compact Operators of the Absolute Fibonacci
Series Spaces. Kragujevac J. Math., 44 (2): 273-286.
İlkhan, M., Kara., Kara, EE. (2021). Matrix Transformations and Compact Operators on Catalan
Sequence Spaces. J. Math. Anal. Appl., 498 (1): 124925.
İlkhan, M., Kara, EE. (2019). A New Banach Space Defined by Euler Totient Matrix Operator.
Operators and Matrices, 13 (2): 527-544.
İlkhan, M., Şimşek, N., Kara, EE. (2021). A New Regular Infinite Matrix Defined by Jordan Totient
Function and its Matrix Domain in p . Math. Meth. Appl. Sci., 44 (9): 7622-7633.
James, CR. (1972). Super Reflexive Spaces with Bases. Pasific J. Math., 41: 409-419.
Kamthan PK, Gupta M, 1981. Sequence Spaces and Series. Marcel Dekker Inc. New York and Basel.
Kara, EE. (2013). Some Topological and Geometrical Properties of New Banach Sequence Spaces. J.
Inequal. Appl., 38: https://doi.org/10.1186/1029-242X-2013-38
Kara, EE., Başarır, M. (2012). An Application of Fibonacci Numbers into Infinite Toeplitz Matrices.
Caspian J. Math. Sci., 1 (1): 43-47.
Kara, EE., İlkhan, M. (2015). On Some Banach Sequence Spaces Derived by a New Band Matrix.
British J. Math. Comput. Sci., 9 (2): 141-159.
Kara, EE., İlkhan, M. (2016). Some Properties of Generalized Fibonacci Sequence Spaces. Linear and
Multilinear Algebra, 64 (11): 2208-2223.
Karakaş, M. (2021). Some Inclusion Results for the New Tribonacci-Lucas Matrix. BEU J. Sci. Tech.,
11 (2): 76-81.
Karakaş, M., Karakaş, A. (2017). New Banach Sequence Spaces that is Defined by the aid Of Lucas
Numbers. Journal of the Institute of Science and Technology, 7 (4): 103-111.
Karakaş, M., Karakaş, A. (2018). A Study on Lucas Difference Sequence Spaces ˆ , p l E r s and
l Eˆ r, s . Maejo Int. J. Sci. Tech., 12 (1): 70-78.
Köthe, G., Toeplitz, O. (1934). Linear Raume mit Unendlich Vielen Koordinaten and Ringe
Unenlicher Matrizen. J. Rreine Angew. Math., 171: 193-226.
Mursaleen M, Noman AK, 2010. On the Spaces of Convergent and Bounded Sequences. Thai J.
Math., 8: 311-329.
Mursaleen, M., Noman, AK. (2011). On Some New Sequence Spaces of Non-Absolute Type Related
to the Spaces p and I. Filomat, 25: 33-51.
Stieglitz, M., Tietz, H. (1977). Matrixtransformationen von Folgenraumen eine Ergebnisübersicht.
Math. Z., 154: 1-16.
Wilansky, A. (1984). Summability Through Functional Analysis. North-Holland Mathematics Studies
Vol. 85. Elseiver. Amsterdam.
Yaying, T., Hazarika, B. (2020). On Sequence Spaces Defined by the Domain of a Regular Tribonacci
Matrix. Math. Slovaca, 70 (3): 697-706.
Yaying, T., Hazarika, B., Mohiuddine, SA. (2021). On Difference Sequence Spaces of Fractional
Order Involving Padovan Numbers, Asian-European J. Math., 14 (6): 1-24.
Yaying, T., Kara, MI. (2021). On Sequence Spaces Defined by the Domain of Tribonacci Matrix in 𝑐0
and 𝑐. Korean J. Math., 29 (1): 25-40.
Bu araştırmada, temel olarak Tribonacci-Lucas sayılarını kullanarak yeni dizi uzayları
tanımlıyoruz. Daha sonra bu uzayın bazı topolojik özelliklerini inceleyerek, bazı
kapsama bağıntıları veriyoruz. Ayrıca uzayımızın Köthe-Toeplitz duallerini
hesaplayarak, bazı matris sınıflarını karakterize ediyoruz. Son olarak, uzayımızın
düzgün konvekslik, kesin konvekslik, süper yansımalılık gibi geometrik özelliklere
sahip olup olmadığını inceliyoruz.
Başar, F. (2011). Summability Theory and its Applications. Bentham Science Publishers. İstanbul.
Başarır, M., Başar, F., Kara, EE. (2016). On the Spaces of Fibonacci Difference Absolutely p-
Summable, Null and Convergent Sequences. Sarajevo J. Math., 12 (25): 167-182.
Candan, M., Kara, EE. (2015). A Study of Topological and Geometrical Characteristics of New
Banach Sequence Spaces. Gulf J. Math., 3 (4): 67-84.
Catalani, M. (2002). Identities for Tribonacci-related Sequences. Cornell University Library. arXiv:
0209179.
Chandra, P., Tripathy, BC. (2002). On Generalised Köthe-Toeplitz Duals of Some Sequence Spaces.
Indian J. Pure Appl. Math., 33: 1301-1306.
Chidume, CE., (1965). Geometric Properties of Banach Spaces and Non-linear Iterations. Lecture
Notes in Mathematics. Springer-Verlag. Berlin.
Choudary, B., Nanda, S. (1989). Functional Analysis with Applications. Wiley Eastern Limited. New
Delhi.
Dağlı, MC., Yaying, T. (2022). Some new Paranormed Sequence Spaces Derived by Regular
Tribonacci Matrix. The Journal of Analysis, https://doi.org/10.1007/s41478-022-00442-w.
Diestel, J. (1976). Geometry of Banach Spaces-Selected Topics. Lecture notes in Mathematics. Vol.
485. Springer-Verlag. Berlin.
Ercan, S., Bektaş, Ç. (2017). Some Topological and Geometric Properties of a New BK-Space Derived
by Using Regular Matrix of Fibonacci Numbers. Linear and Multilinear Algebra, 65 (5): 909-
921.
Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, 1 (3): 70 – 74.
Frontczak, R. (2018). Sums of Tribonacci and Tribonacci-Lucas Numbers. International Journal of
Mathematical Analysis, 12 (1): 19-24.
Gökçe, F. (2022). Absolute Lucas Spaces with Matrix and Compact Operators. Math. Sci. Appl. Enotes,
10 (1): 27-44.
Gökçe, F., Sarıgöl, MA. (2020). Some Matrix and Compact Operators of the Absolute Fibonacci
Series Spaces. Kragujevac J. Math., 44 (2): 273-286.
İlkhan, M., Kara., Kara, EE. (2021). Matrix Transformations and Compact Operators on Catalan
Sequence Spaces. J. Math. Anal. Appl., 498 (1): 124925.
İlkhan, M., Kara, EE. (2019). A New Banach Space Defined by Euler Totient Matrix Operator.
Operators and Matrices, 13 (2): 527-544.
İlkhan, M., Şimşek, N., Kara, EE. (2021). A New Regular Infinite Matrix Defined by Jordan Totient
Function and its Matrix Domain in p . Math. Meth. Appl. Sci., 44 (9): 7622-7633.
James, CR. (1972). Super Reflexive Spaces with Bases. Pasific J. Math., 41: 409-419.
Kamthan PK, Gupta M, 1981. Sequence Spaces and Series. Marcel Dekker Inc. New York and Basel.
Kara, EE. (2013). Some Topological and Geometrical Properties of New Banach Sequence Spaces. J.
Inequal. Appl., 38: https://doi.org/10.1186/1029-242X-2013-38
Kara, EE., Başarır, M. (2012). An Application of Fibonacci Numbers into Infinite Toeplitz Matrices.
Caspian J. Math. Sci., 1 (1): 43-47.
Kara, EE., İlkhan, M. (2015). On Some Banach Sequence Spaces Derived by a New Band Matrix.
British J. Math. Comput. Sci., 9 (2): 141-159.
Kara, EE., İlkhan, M. (2016). Some Properties of Generalized Fibonacci Sequence Spaces. Linear and
Multilinear Algebra, 64 (11): 2208-2223.
Karakaş, M. (2021). Some Inclusion Results for the New Tribonacci-Lucas Matrix. BEU J. Sci. Tech.,
11 (2): 76-81.
Karakaş, M., Karakaş, A. (2017). New Banach Sequence Spaces that is Defined by the aid Of Lucas
Numbers. Journal of the Institute of Science and Technology, 7 (4): 103-111.
Karakaş, M., Karakaş, A. (2018). A Study on Lucas Difference Sequence Spaces ˆ , p l E r s and
l Eˆ r, s . Maejo Int. J. Sci. Tech., 12 (1): 70-78.
Köthe, G., Toeplitz, O. (1934). Linear Raume mit Unendlich Vielen Koordinaten and Ringe
Unenlicher Matrizen. J. Rreine Angew. Math., 171: 193-226.
Mursaleen M, Noman AK, 2010. On the Spaces of Convergent and Bounded Sequences. Thai J.
Math., 8: 311-329.
Mursaleen, M., Noman, AK. (2011). On Some New Sequence Spaces of Non-Absolute Type Related
to the Spaces p and I. Filomat, 25: 33-51.
Stieglitz, M., Tietz, H. (1977). Matrixtransformationen von Folgenraumen eine Ergebnisübersicht.
Math. Z., 154: 1-16.
Wilansky, A. (1984). Summability Through Functional Analysis. North-Holland Mathematics Studies
Vol. 85. Elseiver. Amsterdam.
Yaying, T., Hazarika, B. (2020). On Sequence Spaces Defined by the Domain of a Regular Tribonacci
Matrix. Math. Slovaca, 70 (3): 697-706.
Yaying, T., Hazarika, B., Mohiuddine, SA. (2021). On Difference Sequence Spaces of Fractional
Order Involving Padovan Numbers, Asian-European J. Math., 14 (6): 1-24.
Yaying, T., Kara, MI. (2021). On Sequence Spaces Defined by the Domain of Tribonacci Matrix in 𝑐0
and 𝑐. Korean J. Math., 29 (1): 25-40.
Karakaş, M., & Şevik, U. (2023). Tribonacci-Lucas Dizi Uzayları. Journal of the Institute of Science and Technology, 13(1), 548-562. https://doi.org/10.21597/jist.1154099
AMA
Karakaş M, Şevik U. Tribonacci-Lucas Dizi Uzayları. Iğdır Üniv. Fen Bil Enst. Der. Mart 2023;13(1):548-562. doi:10.21597/jist.1154099
Chicago
Karakaş, Murat, ve Uğurcan Şevik. “Tribonacci-Lucas Dizi Uzayları”. Journal of the Institute of Science and Technology 13, sy. 1 (Mart 2023): 548-62. https://doi.org/10.21597/jist.1154099.
EndNote
Karakaş M, Şevik U (01 Mart 2023) Tribonacci-Lucas Dizi Uzayları. Journal of the Institute of Science and Technology 13 1 548–562.
IEEE
M. Karakaş ve U. Şevik, “Tribonacci-Lucas Dizi Uzayları”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 1, ss. 548–562, 2023, doi: 10.21597/jist.1154099.
ISNAD
Karakaş, Murat - Şevik, Uğurcan. “Tribonacci-Lucas Dizi Uzayları”. Journal of the Institute of Science and Technology 13/1 (Mart 2023), 548-562. https://doi.org/10.21597/jist.1154099.
JAMA
Karakaş M, Şevik U. Tribonacci-Lucas Dizi Uzayları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:548–562.
MLA
Karakaş, Murat ve Uğurcan Şevik. “Tribonacci-Lucas Dizi Uzayları”. Journal of the Institute of Science and Technology, c. 13, sy. 1, 2023, ss. 548-62, doi:10.21597/jist.1154099.
Vancouver
Karakaş M, Şevik U. Tribonacci-Lucas Dizi Uzayları. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):548-62.