Araştırma Makalesi
BibTex RIS Kaynak Göster

Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri

Yıl 2020, , 1975 - 1983, 01.09.2020
https://doi.org/10.21597/jist.696719

Öz

Bu çalışmada 3-boyutlu Öklid uzayında parametrik denklemi ile verilen yüzey üzerinde eğriliği sıfırdan farklı olan bir eğrinin Bertrand B-çiftinin bu yüzey üzerinde isogeodezik olması için gerekli ve yeterli şartlar elde edilerek, ortak Bertrand-B isogeodezik eğrili yüzey aileleri problemi ele alınmıştır.
Bu çalışmada 3-boyutlu Öklid uzayında parametrik denklemi ile verilen yüzey üzerinde eğriliği sıfırdan farklı olan bir eğrinin Bertrand B-çiftinin bu yüzey üzerinde isogeodezik olması için gerekli ve yeterli şartlar elde edilerek, ortak Bertrand-B isogeodezik eğrili yüzey aileleri problemi ele alınmıştır.

Kaynakça

  • Atalay GŞ, Kasap E, 2016. Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Mathematical Science and Applications E-Notes., 4 , 1.
  • Atalay GŞ, E. Kasap, 2017. Surfaces family with common Smarandache geodesic curve, Journal of Science and Arts (JOSA), 4, 41.
  • Atalay GŞ, 2018. Surfaces family with a common Mannheim geodesic curve. Journal of Applied Mathematics and Computation, 2(4),155-165.
  • Atalay GŞ, 2018. Surfaces family with a common Mannheim asymptotic curve. Journal of Applied Mathematics and Computation, 2(4),145-154.
  • Ayvacı KH, 2019. Ortak Mannheim-B İsogeodezikli ve İsoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Bayram E, Kasap E, 2014. Hypersurface family with a common isogeodesic, Studies and Research Series Mathematics and Informatics, 24, 2, 12.
  • Bertrand J, 1850. Mémoire sur la théorie des courbes à double courbure, Comptes Rendus 36, Journal de Mathématiques Pures et Appliquées 15, 332–350.
  • Bishop RL, 1975. There is more than one way to Frame a curve. The American Mathematical Monthly, 82(3), 246.
  • Ergün E, Bayram E, 2016. Surface family with a common natural geodesic lift, Int. J. Math. Combin., 1, 2.
  • Kasap E, Akyildiz FT, Orbay K, 2008. A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation, 201, 781-789.
  • Millman RS, George DP, 1977. Elements of Differential Geometry, Prentice-Hall.
  • O’Neill B, 1966. Elementary Differential Geometry, Academic Press Inc., New York.
  • Wang GJ, Tang K, Tai CL, 2004. Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des. 36 (5), 447-459.
  • Yerlikaya F, Karaahmetoğlu S, Aydemir İ, 2016. On the Bertrand B-Pair Curve in 3-Dimensional Euclidean Space, Journal of Science and Arts, 3(36), 215-224.
  • Yılmaz S, Turgut M, 2010. A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2), 764-776.

Surface Family With A Common Bertrand-B Isogeodesic Curve

Yıl 2020, , 1975 - 1983, 01.09.2020
https://doi.org/10.21597/jist.696719

Öz

In this paper, we construct a surface family possessing a Bertrand B pair of a given curve as an geodesic curve. Using the Bishop-2 frame frame of the given Bertrand B curves, we present the surface as a linear combination of this frame and analyse the necessary and sufficient condition for a given curve such that its Bertrand B pairs is both parametric and geodesic on a parametric surface. Finally, we present some interesting examples to show the validity of this study.
In this paper, we construct a surface family possessing a Bertrand B pair of a given curve as an geodesic curve. Using the Bishop-2 frame frame of the given Bertrand B curves, we present the surface as a linear combination of this frame and analyse the necessary and sufficient condition for a given curve such that its Bertrand B pairs is both parametric and geodesic on a parametric surface. Finally, we present some interesting examples to show the validity of this study.

Kaynakça

  • Atalay GŞ, Kasap E, 2016. Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Mathematical Science and Applications E-Notes., 4 , 1.
  • Atalay GŞ, E. Kasap, 2017. Surfaces family with common Smarandache geodesic curve, Journal of Science and Arts (JOSA), 4, 41.
  • Atalay GŞ, 2018. Surfaces family with a common Mannheim geodesic curve. Journal of Applied Mathematics and Computation, 2(4),155-165.
  • Atalay GŞ, 2018. Surfaces family with a common Mannheim asymptotic curve. Journal of Applied Mathematics and Computation, 2(4),145-154.
  • Ayvacı KH, 2019. Ortak Mannheim-B İsogeodezikli ve İsoasimptotikli Yüzey Ailesi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Bayram E, Kasap E, 2014. Hypersurface family with a common isogeodesic, Studies and Research Series Mathematics and Informatics, 24, 2, 12.
  • Bertrand J, 1850. Mémoire sur la théorie des courbes à double courbure, Comptes Rendus 36, Journal de Mathématiques Pures et Appliquées 15, 332–350.
  • Bishop RL, 1975. There is more than one way to Frame a curve. The American Mathematical Monthly, 82(3), 246.
  • Ergün E, Bayram E, 2016. Surface family with a common natural geodesic lift, Int. J. Math. Combin., 1, 2.
  • Kasap E, Akyildiz FT, Orbay K, 2008. A generalization of surfaces family with common spatial geodesic, Applied Mathematics and Computation, 201, 781-789.
  • Millman RS, George DP, 1977. Elements of Differential Geometry, Prentice-Hall.
  • O’Neill B, 1966. Elementary Differential Geometry, Academic Press Inc., New York.
  • Wang GJ, Tang K, Tai CL, 2004. Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des. 36 (5), 447-459.
  • Yerlikaya F, Karaahmetoğlu S, Aydemir İ, 2016. On the Bertrand B-Pair Curve in 3-Dimensional Euclidean Space, Journal of Science and Arts, 3(36), 215-224.
  • Yılmaz S, Turgut M, 2010. A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2), 764-776.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

K. Hilal Ayvacı 0000-0002-5114-5475

Gülnur Şaffak Atalay 0000-0003-4168-1642

Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 1 Mart 2020
Kabul Tarihi 12 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Ayvacı, K. H., & Şaffak Atalay, G. (2020). Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Journal of the Institute of Science and Technology, 10(3), 1975-1983. https://doi.org/10.21597/jist.696719
AMA Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2020;10(3):1975-1983. doi:10.21597/jist.696719
Chicago Ayvacı, K. Hilal, ve Gülnur Şaffak Atalay. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology 10, sy. 3 (Eylül 2020): 1975-83. https://doi.org/10.21597/jist.696719.
EndNote Ayvacı KH, Şaffak Atalay G (01 Eylül 2020) Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Journal of the Institute of Science and Technology 10 3 1975–1983.
IEEE K. H. Ayvacı ve G. Şaffak Atalay, “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 3, ss. 1975–1983, 2020, doi: 10.21597/jist.696719.
ISNAD Ayvacı, K. Hilal - Şaffak Atalay, Gülnur. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology 10/3 (Eylül 2020), 1975-1983. https://doi.org/10.21597/jist.696719.
JAMA Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:1975–1983.
MLA Ayvacı, K. Hilal ve Gülnur Şaffak Atalay. “Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri”. Journal of the Institute of Science and Technology, c. 10, sy. 3, 2020, ss. 1975-83, doi:10.21597/jist.696719.
Vancouver Ayvacı KH, Şaffak Atalay G. Ortak Bertrand-B İsogeodezik Eğriye Sahip Yüzey Aileleri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(3):1975-83.