Cadmium oxide (CdO) film was developed using a chemical spray pyrolysis technique on the p-type silicon (p-Si) substrate. The solution of the CdO was obtained by dissolving cadmium acetate salt in a mixture of distilled water and methanol. High-quality Au and Al contacts were evaporated on the polished and unpolished side of p-Si, respectively to create 4Au/CdO/p-Si/Al device architecture. In this context, four Au/CdO/p-Si/Al devices that were arbitrarily favored were analyzed and compared in depth. Current-Voltage (I-V) measurements were carried out to find out the performance of the CdO interlayer in the Au/p-Si device. The obtained data were analyzed using the Thermionic emission theory, Norde, and Cheung approach. Results indicated that CdO films grown by simple chemical spray pyrolysis technique could be used as barrier modifiers in Au/p-Si rectifier device.
The author would like to thanks Dr.H.Kacus and A.Ozmen for their valuable contribution to this study.
Kaynakça
Afify HH, Ahmed NM, Tadros MY, Ibrahim FM, 2014. Temperature dependence growth of CdO thin film prepared by spray pyrolysis. Journal of Electrical Systems and Information Technology, 1(2), pp:119–128. doi: 10.1016/j.jesit.2014.07.001
Akinn Ü, Yüksel ÖF, Pakma O, Koralay H, Cavdar S, Tugluoglu N, 2019. A Novel Device Behavior Of Al / Coronene / n-GaAs / In Organic Based Schottky Barrier Diode. New Materials, Compounds and Applications, pp:15–22.
Bagal VS, Patil GP, Deore AB, Suryawanshi SR, Late DJ, More MA, Chavan PG, 2016. Surface modification of aligned CdO nanosheets and their enhanced field emission properties. RSC Advances, 6(47), pp:41261–41267. doi: 10.1039/C5RA28000A
Ferro R, 1999. Some physical properties of F-doped CdO thin films deposited by spray pyrolysis. Thin Solid Films, 347(1–2), pp:295–298. doi: 10.1016/S0040-6090(99)00006-1
Grilli ML, Aydogan S, Yilmaz M, 2016. A study on non-stoichiometric p-NiOx/n-Si heterojunction diode fabricated by RF sputtering: Determination of diode parameters. Superlattices and Microstructures, 100, pp:924–933. doi: 10.1016/j.spmi.2016.10.059
Gupta RK, Ghosh K, Kahol, PK, 2009a. Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), pp:933–936. doi: 10.1016/j.cap.2008.09.007
Gupta RK, Ghosh K, Kahol PK, 2009b. Fabrication and electrical characterization of Schottky diode based on 2-amino-4, 5-imidazoledicarbonitrile (AIDCN). Physica E: Low-Dimensional Systems and Nanostructures, 41(10), pp:1832–1834. doi: 10.1016/j.physe.2009.07.009
Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK, 2008. Structural, optical and electrical properties of In doped CdO thin films for optoelectronic applications. Materials Letters, 62(19), pp:3373–3375. doi: 10.1016/j.matlet.2008.03.015
Jin S, Yang Y, Medvedeva JE, Ireland JR, Metz AW, Ni J, Kannewurf CR, Freeman AJ, Marks TJ, 2004. Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films Grown by MOCVD. Journal of the American Chemical Society, 126(42), pp:13787–13793. doi: 10.1021/ja0467925
Karataş Ş, Altındal Ş, Türüt A, Çakar, M, 2007. Electrical transport characteristics of Sn/p-Si schottky contacts revealed from I–V–T and C–V–T measurements. Physica B: Condensed Matter, 392(1–2), pp:43–50. doi: 10.1016/j.physb.2006.10.039
Karataş Ş, Altındal Ş, Türüt A, Özmen A, 2003. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Applied Surface Science, 217(1–4), pp:250–260. doi: 10.1016/S0169-4332(03)00564-6
Kern W, 1990. The Evolution of Silicon Wafer Cleaning Technology. Journal of The Electrochemical Society, 137(6), pp:1887–1892. doi: 10.1149/1.2086825
Khodai ZT, Abdulmunem Ibrahim B, Kaream Hassan M, 2020. Investigation on the structural and optical properties of copper doped NiO nanostructures thin films. Materials Today: Proceedings, 20, pp:560–565. doi: 10.1016/j.matpr.2019.09.189
Kocyigit A, Yılmaz M, Aydoğan Ş, İncekara Ü, 2019. The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds, 790, pp:388–396. doi: 10.1016/j.jallcom.2019.03.179
Lien CD, So FCT, Nicolet MA, 1984. An improved forward I-V method for nonideal Schottky diodes with high series resistance. IEEE Transactions on Electron Devices, 31(10), pp:1502–1503. doi: 10.1109/T-ED.1984.21739
Mahesh D, Kumar MCS, 2020. Synergetic effects of aluminium and indium dopants in the physical properties of ZnO thin films via spray pyrolysis. Superlattices and Microstructures, 142, p:106511. doi: 10.1016/j.spmi.2020.106511
Menazea AA, Mostafa AM, Al-Ashkar EA, 2020. Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Optical Materials, 100, p:109663. doi: 10.1016/j.optmat.2020.109663
Murthy LCS, Rao KSRK, 1999. Thickness dependent electrical properties of CdO thin films prepared by spray pyrolysis method. Bulletin of Materials Science, 22(6), pp:953–957. doi: 10.1007/BF02745685
Ocak YS, Kulakci M, Kılıçoğlu T, Turan R, Akkılıç K, 2009. Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synthetic Metals, 159(15–16), pp:1603–1607. doi: 10.1016/j.synthmet.2009.04.024
Sağlam M, Biber M, Çakar M, Türüt A, 2004. The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure. Applied Surface Science, 230(1–4), pp:404–410. doi: 10.1016/j.apsusc.2004.03.003
Saha B, Thapa R, Chattopadhyay KK, 2008. Wide range tuning of electrical conductivity of RF sputtered CdO thin films through oxygen partial pressure variation. Solar Energy Materials and Solar Cells, 92(9), pp:1077–1080. doi: 10.1016/j.solmat.2008.03.024
Sankarasubramanian K, Soundarrajan P, Sethuraman K, Ramamurthi K, 2015. Chemical spray pyrolysis deposition of transparent and conducting Fe doped CdO thin films for ethanol sensor. Materials Science in Semiconductor Processing, 40, pp:879–884. doi: 10.1016/j.mssp.2015.07.090
Singh BK, Tripathi S, 2015. Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices and Microstructures, 85, pp:697–706. doi: 10.1016/j.spmi.2015.06.038
Soylu M, Girtan M, Yakuphanoglu F, 2012. Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode. Materials Science and Engineering: B, 177(11), pp:785–790. doi: 10.1016/j.mseb.2012.03.025
Tataroğlu A, Altındal Ş, 2009. The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics. Journal of Alloys and Compounds, 484(1–2), pp:405–409. doi: 10.1016/j.jallcom.2009.04.119
Turgut G, Aydogan S, Yilmaz M, Özmen A, Kacus H, 2021. An Investigation of Spray Deposited CdO Films and CdO/p-Si Heterojunction at Different Substrate Temperatures. JOM. doi: 10.1007/s11837-020-04514-9
Wang Q, Zhao Z, Li H, Zhuang J, Ma Z, Yang Y, Zhang L, Zhang Y, 2018. One-step RF magnetron sputtering method for preparing Cu(In, Ga)Se2 solar cells. Journal of Materials Science: Materials in Electronics, 29(14), pp:11755–11762. doi: 10.1007/s10854-018-9274-y
Yeganeh MA, Rahmatollahpur S, Sadighi-Bonabi R, Mamedov R, 2010. Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes. Physica B: Condensed Matter, 405(16), pp:3253–3258. doi: 10.1016/j.physb.2010.04.055
Yilmaz M, 2019. A function of external doping: Characteristics of inorganic nanostructure based diode. Ceramics International, 45(1), pp:665–673. doi: 10.1016/j.ceramint.2018.09.226
Yıldırım M, 2019. Characterization of the framework of Cu doped TiO2 layers: An insight into optical, electrical and photodiode parameters. Journal of Alloys and Compounds, 773, pp:890–904. doi: 10.1016/j.jallcom.2018.09.276
Ylä-Mella J, Pongrácz E, 2016. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources, 5(4), p:34. doi: 10.3390/resources5040034
Electrical Characterization of CdO Based Au/p-Si Rectifier
Yıl 2021,
Cilt: 11 Sayı: 2, 1050 - 1057, 01.06.2021
Cadmium oxide (CdO) film was developed using a chemical spray pyrolysis technique on the p-type silicon (p-Si) substrate. The solution of the CdO was obtained by dissolving cadmium acetate salt in a mixture of distilled water and methanol. High-quality Au and Al contacts were evaporated on the polished and unpolished side of p-Si, respectively to create 4Au/CdO/p-Si/Al device architecture. In this context, four Au/CdO/p-Si/Al devices that were arbitrarily favored were analyzed and compared in depth. Current-Voltage (I-V) measurements were carried out to find out the performance of the CdO interlayer in the Au/p-Si device. The obtained data were analyzed using the Thermionic emission theory, Norde, and Cheung approach. Results indicated that CdO films grown by simple chemical spray pyrolysis technique could be used as barrier modifiers in Au/p-Si rectifier device.
Afify HH, Ahmed NM, Tadros MY, Ibrahim FM, 2014. Temperature dependence growth of CdO thin film prepared by spray pyrolysis. Journal of Electrical Systems and Information Technology, 1(2), pp:119–128. doi: 10.1016/j.jesit.2014.07.001
Akinn Ü, Yüksel ÖF, Pakma O, Koralay H, Cavdar S, Tugluoglu N, 2019. A Novel Device Behavior Of Al / Coronene / n-GaAs / In Organic Based Schottky Barrier Diode. New Materials, Compounds and Applications, pp:15–22.
Bagal VS, Patil GP, Deore AB, Suryawanshi SR, Late DJ, More MA, Chavan PG, 2016. Surface modification of aligned CdO nanosheets and their enhanced field emission properties. RSC Advances, 6(47), pp:41261–41267. doi: 10.1039/C5RA28000A
Ferro R, 1999. Some physical properties of F-doped CdO thin films deposited by spray pyrolysis. Thin Solid Films, 347(1–2), pp:295–298. doi: 10.1016/S0040-6090(99)00006-1
Grilli ML, Aydogan S, Yilmaz M, 2016. A study on non-stoichiometric p-NiOx/n-Si heterojunction diode fabricated by RF sputtering: Determination of diode parameters. Superlattices and Microstructures, 100, pp:924–933. doi: 10.1016/j.spmi.2016.10.059
Gupta RK, Ghosh K, Kahol, PK, 2009a. Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), pp:933–936. doi: 10.1016/j.cap.2008.09.007
Gupta RK, Ghosh K, Kahol PK, 2009b. Fabrication and electrical characterization of Schottky diode based on 2-amino-4, 5-imidazoledicarbonitrile (AIDCN). Physica E: Low-Dimensional Systems and Nanostructures, 41(10), pp:1832–1834. doi: 10.1016/j.physe.2009.07.009
Gupta RK, Ghosh K, Patel R, Mishra SR, Kahol PK, 2008. Structural, optical and electrical properties of In doped CdO thin films for optoelectronic applications. Materials Letters, 62(19), pp:3373–3375. doi: 10.1016/j.matlet.2008.03.015
Jin S, Yang Y, Medvedeva JE, Ireland JR, Metz AW, Ni J, Kannewurf CR, Freeman AJ, Marks TJ, 2004. Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films Grown by MOCVD. Journal of the American Chemical Society, 126(42), pp:13787–13793. doi: 10.1021/ja0467925
Karataş Ş, Altındal Ş, Türüt A, Çakar, M, 2007. Electrical transport characteristics of Sn/p-Si schottky contacts revealed from I–V–T and C–V–T measurements. Physica B: Condensed Matter, 392(1–2), pp:43–50. doi: 10.1016/j.physb.2006.10.039
Karataş Ş, Altındal Ş, Türüt A, Özmen A, 2003. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Applied Surface Science, 217(1–4), pp:250–260. doi: 10.1016/S0169-4332(03)00564-6
Kern W, 1990. The Evolution of Silicon Wafer Cleaning Technology. Journal of The Electrochemical Society, 137(6), pp:1887–1892. doi: 10.1149/1.2086825
Khodai ZT, Abdulmunem Ibrahim B, Kaream Hassan M, 2020. Investigation on the structural and optical properties of copper doped NiO nanostructures thin films. Materials Today: Proceedings, 20, pp:560–565. doi: 10.1016/j.matpr.2019.09.189
Kocyigit A, Yılmaz M, Aydoğan Ş, İncekara Ü, 2019. The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds, 790, pp:388–396. doi: 10.1016/j.jallcom.2019.03.179
Lien CD, So FCT, Nicolet MA, 1984. An improved forward I-V method for nonideal Schottky diodes with high series resistance. IEEE Transactions on Electron Devices, 31(10), pp:1502–1503. doi: 10.1109/T-ED.1984.21739
Mahesh D, Kumar MCS, 2020. Synergetic effects of aluminium and indium dopants in the physical properties of ZnO thin films via spray pyrolysis. Superlattices and Microstructures, 142, p:106511. doi: 10.1016/j.spmi.2020.106511
Menazea AA, Mostafa AM, Al-Ashkar EA, 2020. Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Optical Materials, 100, p:109663. doi: 10.1016/j.optmat.2020.109663
Murthy LCS, Rao KSRK, 1999. Thickness dependent electrical properties of CdO thin films prepared by spray pyrolysis method. Bulletin of Materials Science, 22(6), pp:953–957. doi: 10.1007/BF02745685
Ocak YS, Kulakci M, Kılıçoğlu T, Turan R, Akkılıç K, 2009. Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synthetic Metals, 159(15–16), pp:1603–1607. doi: 10.1016/j.synthmet.2009.04.024
Sağlam M, Biber M, Çakar M, Türüt A, 2004. The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure. Applied Surface Science, 230(1–4), pp:404–410. doi: 10.1016/j.apsusc.2004.03.003
Saha B, Thapa R, Chattopadhyay KK, 2008. Wide range tuning of electrical conductivity of RF sputtered CdO thin films through oxygen partial pressure variation. Solar Energy Materials and Solar Cells, 92(9), pp:1077–1080. doi: 10.1016/j.solmat.2008.03.024
Sankarasubramanian K, Soundarrajan P, Sethuraman K, Ramamurthi K, 2015. Chemical spray pyrolysis deposition of transparent and conducting Fe doped CdO thin films for ethanol sensor. Materials Science in Semiconductor Processing, 40, pp:879–884. doi: 10.1016/j.mssp.2015.07.090
Singh BK, Tripathi S, 2015. Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices and Microstructures, 85, pp:697–706. doi: 10.1016/j.spmi.2015.06.038
Soylu M, Girtan M, Yakuphanoglu F, 2012. Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode. Materials Science and Engineering: B, 177(11), pp:785–790. doi: 10.1016/j.mseb.2012.03.025
Tataroğlu A, Altındal Ş, 2009. The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics. Journal of Alloys and Compounds, 484(1–2), pp:405–409. doi: 10.1016/j.jallcom.2009.04.119
Turgut G, Aydogan S, Yilmaz M, Özmen A, Kacus H, 2021. An Investigation of Spray Deposited CdO Films and CdO/p-Si Heterojunction at Different Substrate Temperatures. JOM. doi: 10.1007/s11837-020-04514-9
Wang Q, Zhao Z, Li H, Zhuang J, Ma Z, Yang Y, Zhang L, Zhang Y, 2018. One-step RF magnetron sputtering method for preparing Cu(In, Ga)Se2 solar cells. Journal of Materials Science: Materials in Electronics, 29(14), pp:11755–11762. doi: 10.1007/s10854-018-9274-y
Yeganeh MA, Rahmatollahpur S, Sadighi-Bonabi R, Mamedov R, 2010. Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes. Physica B: Condensed Matter, 405(16), pp:3253–3258. doi: 10.1016/j.physb.2010.04.055
Yilmaz M, 2019. A function of external doping: Characteristics of inorganic nanostructure based diode. Ceramics International, 45(1), pp:665–673. doi: 10.1016/j.ceramint.2018.09.226
Yıldırım M, 2019. Characterization of the framework of Cu doped TiO2 layers: An insight into optical, electrical and photodiode parameters. Journal of Alloys and Compounds, 773, pp:890–904. doi: 10.1016/j.jallcom.2018.09.276
Ylä-Mella J, Pongrácz E, 2016. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources, 5(4), p:34. doi: 10.3390/resources5040034
Yılmaz, M. (2021). Electrical Characterization of CdO Based Au/p-Si Rectifier. Journal of the Institute of Science and Technology, 11(2), 1050-1057. https://doi.org/10.21597/jist.858524
AMA
Yılmaz M. Electrical Characterization of CdO Based Au/p-Si Rectifier. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2021;11(2):1050-1057. doi:10.21597/jist.858524
Chicago
Yılmaz, Mehmet. “Electrical Characterization of CdO Based Au/P-Si Rectifier”. Journal of the Institute of Science and Technology 11, sy. 2 (Haziran 2021): 1050-57. https://doi.org/10.21597/jist.858524.
EndNote
Yılmaz M (01 Haziran 2021) Electrical Characterization of CdO Based Au/p-Si Rectifier. Journal of the Institute of Science and Technology 11 2 1050–1057.
IEEE
M. Yılmaz, “Electrical Characterization of CdO Based Au/p-Si Rectifier”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 2, ss. 1050–1057, 2021, doi: 10.21597/jist.858524.
ISNAD
Yılmaz, Mehmet. “Electrical Characterization of CdO Based Au/P-Si Rectifier”. Journal of the Institute of Science and Technology 11/2 (Haziran 2021), 1050-1057. https://doi.org/10.21597/jist.858524.
JAMA
Yılmaz M. Electrical Characterization of CdO Based Au/p-Si Rectifier. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1050–1057.
MLA
Yılmaz, Mehmet. “Electrical Characterization of CdO Based Au/P-Si Rectifier”. Journal of the Institute of Science and Technology, c. 11, sy. 2, 2021, ss. 1050-7, doi:10.21597/jist.858524.
Vancouver
Yılmaz M. Electrical Characterization of CdO Based Au/p-Si Rectifier. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(2):1050-7.