Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the Structures of m- and p-nitro Bromoacetophenone Compounds by Experimental (FT‒IR, NMR) and theoretical approaches

Yıl 2023, Cilt: 13 Sayı: 3, 1663 - 1675, 01.09.2023
https://doi.org/10.21597/jist.1280807

Öz

2-Bromo-3-nitroacetophenone (I) and 2-Bromo-4-nitroacetophenone (II), which are structural isomers of each other, were characterized using proton/carbon NMR, FT-IR, and density functional methods. The effects of the substituents on the molecular geometry parameters were investigated by comparing the optimized molecular structures obtained by computational methods with root mean square error calculations. The potential energy surface scan of the torsion angle between the bromoacetone group and the ring revealed that the lowest energy conformation is at 110°. The molecules' chemical reactivity and kinetic stability in different solvents were studied using frontier molecular orbital analyses. NMR core assignments and IR vibration assignments revealed similarities between the isomers. At the computational level that we determined to be sufficient in accuracy and precision for molecular geometry and spectrum calculations, it was found that the average polarizability of the compounds are approximately five times, and the total high-level polarizability are approximately four times greater than the reference compound when their nonlinear optical properties are theoretically calculated.

Kaynakça

  • AIST (2022a). Advanced Industrial Science and Technology. 2-bromo-3’-nitroacetophenone. Erişim adresi: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=32094 (Erişim tarihi: 10 Ekim 2022)
  • AIST (2022b). Advanced Industrial Science and Technology. 2-bromo-4’-nitroacetophenone. Erişim adresi: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=23286 (Erişim tarihi: 10 Ekim 2022)
  • Alaşalvar, C., Öztürk, N., Gökçe, H., Güder, A., Menteşe, E. ve Bektaş, H. (2021). Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative. Journal Of Biomolecular Structure And Dynamics, 40(14), 6642-6655. https://doi.org/10.1080/07391102.2021.1887764
  • Aoki, Y., Oshima, K., & Utimoto, K. (1995). Preparation of Enolates from α -Haloketones with n -BuLi, PhMgBr, or Et 2 Zn via Halogen-Metal Exchange Reaction. Chemistry Letters, 24(6), 463–464. https://doi.org/10.1246/cl.1995.463
  • Austin, A., Petersson, G. A., Frisch, M. J., Dobek, F. J., Scalmani, G., & Throssell, K. (2012). A Density Functional with Spherical Atom Dispersion Terms. Journal of Chemical Theory and Computation, 8(12), 4989–5007. https://doi.org/10.1021/ct300778e
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics. 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  • Cancès, E., Mennucci, B. & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032. https://doi.org/10.1063/1.474659
  • Céspedes, C. L., Uchoa, A., Salazar, J. R., Perich, F. & Pardo, F. (2002). Plant Growth Inhibitory Activity of p -Hydroxyacetophenones and Tremetones from Chilean Endemic Baccharis Species and Some Analogous: A Comparative Study. Journal of Agricultural and Food Chemistry, 50(8), 2283–2292. https://doi.org/10.1021/jf011108g
  • De Kimpe, N. & Verhe, R., (1988). α-Haloketones,α-Haloaldehydes and α-Haloimines. Chichester, UK: John Wiley & Sons, Inc.
  • Erian, A., Sherif, S. & Gaber, H. (2003). The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules, 8(11), 793–865. https://doi.org/10.3390/81100793
  • Filarowski, A., Kochel, A., Kluba, M. & Kamounah, F. S. (2008). Structural and aromatic aspects of tautomeric equilibrium in hydroxy aryl Schiff bases. Journal of Physical Organic Chemistry, 21(11), 939–944. https://doi.org/10.1002/poc.1403
  • Foster, J. P. & Weinhold, F. (1980). Natural Hybrid Orbitals. Journal of the American Chemical Society, 102(22), 7211–7218. https://doi.org/10.1021/ja00544a007
  • Fouad, M., Richard D. & Gandour, F. R. F. (2013). 2-bromo-1-(3-nitrophenyl)ethanone. CSD Communication. https://doi.org/10.5517/cc11jd76
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N.,…(2009). Gaussian 09, Revision D.01. Wallingford CT: Gaussian Inc.
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813–8826. https://doi.org/10.3390/molecules15128813
  • GaussView, Dennington, R., Keith, T., Millam, J. (2009). Version 5, Semichem Inc., Shawnee Mission, KS.
  • Jamróz, M. H. (2010). Vibrational Energy Distribution Analysis (VEDA) 4. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
  • Jasinski, J. P., Butcher, R. J., Praveen, A. S., Yathirajan, H. S., & Narayana, B. (2011). 2-Bromo-1-(3-Nitrophenyl)Ethanone. Acta Crystallographica Section E: Structure Reports Online, 67(1), 1562–1565. https://doi.org/10.1107/S1600536810049585
  • Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well, Information Sciences. 585, 609–629. https://doi.org/10.1016/j.ins.2021.11.036
  • Kemp, W. (1991). Organic Spectroscopy (C. 4). London: Macmillan Education UK. https://doi.org/10.1007/978-1-349-15203-2
  • Kim, H. K., Tak, J. H. & Ahn, Y. J. (2004). Acaricidal Activity of Paeonia suffruticosa Root Bark-Derived Compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). Journal of Agricultural and Food Chemistry, 52(26), 7857–7861. https://doi.org/10.1021/jf048708a
  • Köse, E. (2016). the Spectroscopic Analysis of 2,4’-Dibromoacetophenone Moleculeby Using Quantum Chemical Calculations. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(AFG5 SPECIAL ISSUE), 677–677. https://doi.org/10.18038/aubtda.267115
  • Kruszewski, J. & Krygowski, T. M. (1972). Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Letters, 13(36), 3839–3842. https://doi.org/10.1016/S0040-4039(01)94175-9
  • Krygowski, T. M. (1993). Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of Pi-electron systems. Journal of Chemical Information and Modeling, 33(1), 70–78. https://doi.org/10.1021/ci00011a011
  • Lalama, S. J., & Garito, A. F. (1979). Origin of the nonlinear second-order optical susceptibilities of organic systems. Physical Review A, 20(3), 1179–1194. https://doi.org/10.1103/PhysRevA.20.1179
  • Ma, Y.-T., Fan, H.-F., Gao, Y.-Q., Li, H., Zhang, A.-L., & Gao, J.-M. (2013). Natural Products as Sources of New Fungicides (I): Synthesis and Antifungal Activity of Acetophenone Derivatives Against Phytopathogenic Fungi. Chemical Biology & Drug Design, 81(4), 545–552. https://doi.org/10.1111/cbdd.12064
  • Oh, M. S., Yang, J.-Y., & Lee, H. S. (2012). Acaricidal Toxicity of 2′-Hydroxy-4′-methylacetophenone Isolated from Angelicae koreana Roots and Structure–Activity Relationships of Its Derivatives. Journal of Agricultural and Food Chemistry, 60(14), 3606–3611. https://doi.org/10.1021/jf205379u
  • Pattison, G. (2017). Conformational preferences of α-fluoroketones may influence their reactivity. Beilstein Journal of Organic Chemistry, 13, 2915–2921. https://doi.org/10.3762/bjoc.13.284 Socrates, G. (2004). Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition (3rd baskı). John Wiley & Sons.
  • Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011149
  • Sundaraganesan, N., Ilakiamani, S., Saleem, H., Wojciechowski, P. M., & Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61(13–14), 2995–3001. https://doi.org/10.1016/j.saa.2004.11.016
  • Vijayalakshmi, S., & Kalyanaraman, S. (2014). DFT and TD-DFT approach for the analysis of NLO and OLED applications of 9-anthraldehyde. Optik, 125(10), 2429–2432. https://doi.org/10.1016/j.ijleo.2013.10.104
  • Wolinski, K., Hinton, J. F. & Pulay, P. (1990). Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Yi, C., Chen, J., Wei, C., Wu, S., Wang, S., Hu, D. & Song, B. (2020). α-Haloacetophenone and analogues as potential antibacterial agents and nematicides. Bioorganic & Medicinal Chemistry Letters, 30(2), 126814. https://doi.org/10.1016/j.bmcl.2019.126814
  • Yıldırım, A. Ö., Yıldırım, M. H. & Kaştaş, Ç. A. (2016). Studies on the synthesis, spectroscopic analysis and DFT calculations on (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3methoxyphenol as a novel Schiff’s base. Journal of Molecular Structure, 1113, 1–8. https://doi.org/10.1016/j.molstruc.2016.02.041

m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi

Yıl 2023, Cilt: 13 Sayı: 3, 1663 - 1675, 01.09.2023
https://doi.org/10.21597/jist.1280807

Öz

Birbirlerinin yapısal izomerleri olan 2-Bromo-3-nitroasetofenon (I) ve 2-Bromo-4-nitroasetofenon (II) bileşikleri proton/karbon NMR, FT-IR ve yoğunluk fonksiyoneli yöntemleri kullanılarak karakterize edildi. Hesaplamalı yöntemlerle elde edilen en iyileştirilmiş moleküler yapıları ortalama hata kare kökü hesapları ile karşılaştırılarak sübstitüentlerin konumlarının moleküler geometri parametreleri üzerindeki etkileri araştırıldı. Bromoaseton grubu ile halka arasıdaki burulma açısının potansiyel enerji yüzey taraması yapılarak en düşük enerjili şekillenimin 110°’de olduğu belirlendi. Farklı çözücüler içinde sınır moleküler orbital analizleri ile moleküllerin kimyasal reaktiviteleri ve kinetik kararlılıkları araştırıldı. NMR’da yapılan çekirdek atamaları ve IR’de yapılan titreşim atamaları izomerler arasındaki benzerlikleri ortaya çıkardı. Moleküler geometri ve spektrum hesaplamalarında yeterli doğruluk ve hassasiyette olduğunu belirlediğimiz hesaplama seviyesinde, bileşiklerin doğrusal olmayan optik özellikleri teorik olarak hesaplandığında referans bileşiğe göre ortalama kutuplanabilirliklerinin yaklaşık dört kat, toplam yüksek mertebe kutuplanabilirliklerinin yaklaşık beş kat fazla olduğu belirlendi.

Kaynakça

  • AIST (2022a). Advanced Industrial Science and Technology. 2-bromo-3’-nitroacetophenone. Erişim adresi: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=32094 (Erişim tarihi: 10 Ekim 2022)
  • AIST (2022b). Advanced Industrial Science and Technology. 2-bromo-4’-nitroacetophenone. Erişim adresi: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=23286 (Erişim tarihi: 10 Ekim 2022)
  • Alaşalvar, C., Öztürk, N., Gökçe, H., Güder, A., Menteşe, E. ve Bektaş, H. (2021). Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative. Journal Of Biomolecular Structure And Dynamics, 40(14), 6642-6655. https://doi.org/10.1080/07391102.2021.1887764
  • Aoki, Y., Oshima, K., & Utimoto, K. (1995). Preparation of Enolates from α -Haloketones with n -BuLi, PhMgBr, or Et 2 Zn via Halogen-Metal Exchange Reaction. Chemistry Letters, 24(6), 463–464. https://doi.org/10.1246/cl.1995.463
  • Austin, A., Petersson, G. A., Frisch, M. J., Dobek, F. J., Scalmani, G., & Throssell, K. (2012). A Density Functional with Spherical Atom Dispersion Terms. Journal of Chemical Theory and Computation, 8(12), 4989–5007. https://doi.org/10.1021/ct300778e
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics. 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  • Cancès, E., Mennucci, B. & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032. https://doi.org/10.1063/1.474659
  • Céspedes, C. L., Uchoa, A., Salazar, J. R., Perich, F. & Pardo, F. (2002). Plant Growth Inhibitory Activity of p -Hydroxyacetophenones and Tremetones from Chilean Endemic Baccharis Species and Some Analogous: A Comparative Study. Journal of Agricultural and Food Chemistry, 50(8), 2283–2292. https://doi.org/10.1021/jf011108g
  • De Kimpe, N. & Verhe, R., (1988). α-Haloketones,α-Haloaldehydes and α-Haloimines. Chichester, UK: John Wiley & Sons, Inc.
  • Erian, A., Sherif, S. & Gaber, H. (2003). The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules, 8(11), 793–865. https://doi.org/10.3390/81100793
  • Filarowski, A., Kochel, A., Kluba, M. & Kamounah, F. S. (2008). Structural and aromatic aspects of tautomeric equilibrium in hydroxy aryl Schiff bases. Journal of Physical Organic Chemistry, 21(11), 939–944. https://doi.org/10.1002/poc.1403
  • Foster, J. P. & Weinhold, F. (1980). Natural Hybrid Orbitals. Journal of the American Chemical Society, 102(22), 7211–7218. https://doi.org/10.1021/ja00544a007
  • Fouad, M., Richard D. & Gandour, F. R. F. (2013). 2-bromo-1-(3-nitrophenyl)ethanone. CSD Communication. https://doi.org/10.5517/cc11jd76
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N.,…(2009). Gaussian 09, Revision D.01. Wallingford CT: Gaussian Inc.
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813–8826. https://doi.org/10.3390/molecules15128813
  • GaussView, Dennington, R., Keith, T., Millam, J. (2009). Version 5, Semichem Inc., Shawnee Mission, KS.
  • Jamróz, M. H. (2010). Vibrational Energy Distribution Analysis (VEDA) 4. Vibrational Energy Distribution Analysis VEDA 4, Warsaw.
  • Jasinski, J. P., Butcher, R. J., Praveen, A. S., Yathirajan, H. S., & Narayana, B. (2011). 2-Bromo-1-(3-Nitrophenyl)Ethanone. Acta Crystallographica Section E: Structure Reports Online, 67(1), 1562–1565. https://doi.org/10.1107/S1600536810049585
  • Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well, Information Sciences. 585, 609–629. https://doi.org/10.1016/j.ins.2021.11.036
  • Kemp, W. (1991). Organic Spectroscopy (C. 4). London: Macmillan Education UK. https://doi.org/10.1007/978-1-349-15203-2
  • Kim, H. K., Tak, J. H. & Ahn, Y. J. (2004). Acaricidal Activity of Paeonia suffruticosa Root Bark-Derived Compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). Journal of Agricultural and Food Chemistry, 52(26), 7857–7861. https://doi.org/10.1021/jf048708a
  • Köse, E. (2016). the Spectroscopic Analysis of 2,4’-Dibromoacetophenone Moleculeby Using Quantum Chemical Calculations. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(AFG5 SPECIAL ISSUE), 677–677. https://doi.org/10.18038/aubtda.267115
  • Kruszewski, J. & Krygowski, T. M. (1972). Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Letters, 13(36), 3839–3842. https://doi.org/10.1016/S0040-4039(01)94175-9
  • Krygowski, T. M. (1993). Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of Pi-electron systems. Journal of Chemical Information and Modeling, 33(1), 70–78. https://doi.org/10.1021/ci00011a011
  • Lalama, S. J., & Garito, A. F. (1979). Origin of the nonlinear second-order optical susceptibilities of organic systems. Physical Review A, 20(3), 1179–1194. https://doi.org/10.1103/PhysRevA.20.1179
  • Ma, Y.-T., Fan, H.-F., Gao, Y.-Q., Li, H., Zhang, A.-L., & Gao, J.-M. (2013). Natural Products as Sources of New Fungicides (I): Synthesis and Antifungal Activity of Acetophenone Derivatives Against Phytopathogenic Fungi. Chemical Biology & Drug Design, 81(4), 545–552. https://doi.org/10.1111/cbdd.12064
  • Oh, M. S., Yang, J.-Y., & Lee, H. S. (2012). Acaricidal Toxicity of 2′-Hydroxy-4′-methylacetophenone Isolated from Angelicae koreana Roots and Structure–Activity Relationships of Its Derivatives. Journal of Agricultural and Food Chemistry, 60(14), 3606–3611. https://doi.org/10.1021/jf205379u
  • Pattison, G. (2017). Conformational preferences of α-fluoroketones may influence their reactivity. Beilstein Journal of Organic Chemistry, 13, 2915–2921. https://doi.org/10.3762/bjoc.13.284 Socrates, G. (2004). Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition (3rd baskı). John Wiley & Sons.
  • Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011149
  • Sundaraganesan, N., Ilakiamani, S., Saleem, H., Wojciechowski, P. M., & Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61(13–14), 2995–3001. https://doi.org/10.1016/j.saa.2004.11.016
  • Vijayalakshmi, S., & Kalyanaraman, S. (2014). DFT and TD-DFT approach for the analysis of NLO and OLED applications of 9-anthraldehyde. Optik, 125(10), 2429–2432. https://doi.org/10.1016/j.ijleo.2013.10.104
  • Wolinski, K., Hinton, J. F. & Pulay, P. (1990). Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Yi, C., Chen, J., Wei, C., Wu, S., Wang, S., Hu, D. & Song, B. (2020). α-Haloacetophenone and analogues as potential antibacterial agents and nematicides. Bioorganic & Medicinal Chemistry Letters, 30(2), 126814. https://doi.org/10.1016/j.bmcl.2019.126814
  • Yıldırım, A. Ö., Yıldırım, M. H. & Kaştaş, Ç. A. (2016). Studies on the synthesis, spectroscopic analysis and DFT calculations on (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3methoxyphenol as a novel Schiff’s base. Journal of Molecular Structure, 1113, 1–8. https://doi.org/10.1016/j.molstruc.2016.02.041
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Muhammet Hakkı Yıldırım 0000-0001-6576-0252

Arzu Özek Yıldırım 0000-0002-2185-7009

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 11 Nisan 2023
Kabul Tarihi 24 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 3

Kaynak Göster

APA Yıldırım, M. H., & Özek Yıldırım, A. (2023). m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi. Journal of the Institute of Science and Technology, 13(3), 1663-1675. https://doi.org/10.21597/jist.1280807
AMA Yıldırım MH, Özek Yıldırım A. m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1663-1675. doi:10.21597/jist.1280807
Chicago Yıldırım, Muhammet Hakkı, ve Arzu Özek Yıldırım. “M- Ve P-Nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) Ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1663-75. https://doi.org/10.21597/jist.1280807.
EndNote Yıldırım MH, Özek Yıldırım A (01 Eylül 2023) m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi. Journal of the Institute of Science and Technology 13 3 1663–1675.
IEEE M. H. Yıldırım ve A. Özek Yıldırım, “m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1663–1675, 2023, doi: 10.21597/jist.1280807.
ISNAD Yıldırım, Muhammet Hakkı - Özek Yıldırım, Arzu. “M- Ve P-Nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) Ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1663-1675. https://doi.org/10.21597/jist.1280807.
JAMA Yıldırım MH, Özek Yıldırım A. m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1663–1675.
MLA Yıldırım, Muhammet Hakkı ve Arzu Özek Yıldırım. “M- Ve P-Nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) Ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1663-75, doi:10.21597/jist.1280807.
Vancouver Yıldırım MH, Özek Yıldırım A. m- ve p-nitro Bromoasetofenon Bileşiklerinin Deneysel (FT‒IR, NMR) ve Teorik Yaklaşımlarla Yapılarının Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1663-75.