Araştırma Makalesi
BibTex RIS Kaynak Göster

Protective Role of Coenzyme Q10 in Modulating Apoptosis, Necrosis, and Autophagy Pathways Induced by Cyclophosphamide in Rat TesticularTissue

Yıl 2025, Cilt: 15 Sayı: 3, 798 - 808, 01.09.2025
https://doi.org/10.21597/jist.1646028

Öz

Cyclophosphamide (CPC) is one of the oldest anticancer drugs frequently used in cancer treatment. However, CPC is known to have adverse effects on the testis, spermatogenesis, and reproductive hormones. This study aimed to investigate the effect of Coenzyme Q10 (CoQ10), a compound naturally found in the testis and seminal fluid and used in infertility treatment, on repairing the damage caused by CPC in testicular tissue. Thirty male Wistar Albino rats were divided into five groups, each consisting of six animals: Control, CPC, CoQ10, CPC + CoQ10-I (CQ-I), and CPC + CoQ10-II (CQ-II). The mRNA expression levels of junctional genes were detected in apoptotic (caspase-8, caspase-9, caspase-3, BAX, BCL2, and BAK1), autophagic (ATG3, ATG5, and LC3), and necrotic (RIPK1) cell death mechanisms. cDNA was synthesized from total mRNA, and the gene expression levels of apoptosis markers were determined by RT-qPCR. Statistical significance was set at p<0.05. CPC was found to upregulate caspase-9, caspase-3, and BAK1 mRNA levels compared to the control group (p<0.05). However, co-administration of CoQ10 with CPC significantly reduced the expression levels of caspase-9, caspase-3, and BAK1 (p<0.05). Additionally, a significant increase in BCL-2 gene expression was observed (p<0.05). CoQ10 treatment reduced the BAX/BCL-2 ratio compared to the control and CPC groups (p<0.05). CPC reduced ATG3 and LC3 mRNA expression, but co-administration of CPC with CoQ10 increased LC3 expression (p<0.05); additionally, RIPK1 levels were lower in the CQ-I group compared to CPC (p<0.05). In conclusion, CoQ10 was found to reduce CPC-induced apoptosis, regulate autophagy, and prevent necroptosis, promoting cell survival. However, larger and longer-term studies are required for clinical implementation.

Kaynakça

  • Abdi, M., Fadaee, M., Jourabchi, A., Karimzadeh, H., & Kazemi, T. (2024). Cyclophosphamide-Induced Infertility and the Impact of Antioxidants. American journal of reproductive immunology (New York, N.Y. : 1989), 92(6), e70014. https://doi.org/10.1111/aji.70014
  • Ahlmann, M., & Hempel, G. (2016). The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemotherapy and Pharmacology, 78(4), 661-671. https://doi.org/10.1007/s00280-016-3152-1
  • Barcelos, I. P. de., & Haas, R. H. (2019). CoQ10 and aging. Biology, 8(2), 28. https://doi.org/10.3390/biology8020028
  • Bentinger, M., et al. (2007). The antioxidant role of coenzyme Q. Mitochondrion, 7(S41-S50).
  • Brock, N., & Wilmanns, H. (1958). Effect of a cyclic nitrogen mustard-phosphamidester on experimentally induced tumors in rats; chemotherapeutic effect and pharmacological properties of B518 ASTA [German]. Deutsche Medizinische Wochenschrift, 83, 453-458.
  • Cao, Y., Wang, X., Li, S., Wang, H., Yu, L., & Wang, P. (2017). The effects of L-carnitine against cyclophosphamide-induced injuries in mouse testis. Basic & Clinical Pharmacology & Toxicology, 120(2), 152-158. https://doi.org/10.1111/bcpt.12679
  • Chomczynski, P., & Mackey, K. (1995). Modification of the TRIZOL reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques, 19(6), 942-945.
  • Diemer, T., Allen, J. A., Hales, K. H., & Hales, D. B. (2003). Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology, 144(7), 2882-2891. https://doi.org/10.1210/en.2002-0090
  • El-Khadragy, M., Al-Megrin, W. A., AlSadhan, N. A., Metwally, D. M., El-Hennamy, R. E., Salem, F. E. H., Kassab, R. B., & Abdel Moneim, A. E. (2020). Impact of Coenzyme Q10 Administration on Lead Acetate-Induced Testicular Damage in Rats. Oxidative medicine and cellular longevity, 2020, 4981386. https://doi.org/10.1155/2020/4981386
  • Emadi, A., Jones, R. J., & Brodsky, R. A. (2009). Cyclophosphamide and cancer: golden anniversary. Nature reviews. Clinical oncology, 6(11), 638–647. https://doi.org/10.1038/nrclinonc.2009.146
  • Fusco, R., Salinaro, A. T., Siracusa, R., D’Amico, R., Impellizzeri, D., Scuto, M., Ontario, M. L., Crea, R., Cordaro, M., Cuzzocrea, S., Di Paola, R., & Calabrese, V. (2021). Hidrox® counteracts cyclophosphamide-induced male infertility through NRF2 pathways in a mouse model. Antioxidants, 10(5), 778. https://doi.org/10.3390/antiox10050778
  • Gajjar, R., Miller, S. D., Meyers, K. E., & Ginsberg, J. P. (2015). Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatric nephrology (Berlin, Germany), 30(7), 1099–1106. https://doi.org/10.1007/s00467-014-2897-1
  • Hargreaves, I., Heaton, R. A., & Mantle, D. (2020). Disorders of human coenzyme Q10 metabolism: An overview. International Journal of Molecular Sciences, 21(18), 6695. https://doi.org/10.3390/ijms21186695
  • Irani, S., Zhandi, M., Sadeghi, M., Yousefi, A. R., Marzban, H., & Rafieian-Naeini, H. R. (2022). The effect of dietary supplementation of coenzyme Q10 on reproductive variables of cadmium-challenged male Japanese quails (Coturnix Japonica). Veterinary Medicine and Science. https://doi.org/10.1002/vms3.990
  • Kehe, K., Balszuweit, F., Steinritz, D., & Thiermann, H. (2009). Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology, 263(1), 12–19. https://doi.org/10.1016/j.tox.2009.01.019
  • Koşal, V., Rua, İ., Yüksek, V., & Keleş, Ö. F. (2023). Investigation of the effect of Coenzyme-Q10 on cyclophosphamide-induced testicular damage in male rats. Revista Cientifica de la Facultad de Veterinaria, 33(2), 1-7.
  • Li, J., You, Y., Zhang, P., Huang, X., Dong, L., Yang, F., Yu, X., & Chang, D. (2022). Qiangjing tablets repair of blood-testis barrier dysfunction in rats via regulating oxidative stress and p38 MAPK pathway. BMC Complementary Medicine and Therapies, 22(1), 133. https://doi.org/10.1186/s12906-022-03615-z
  • Littarru, G. P., Tiano, L., Belardinelli, R., & Watts, G. F. (2011). Coenzyme Q(10) , endothelial function, and cardiovascular disease. BioFactors (Oxford, England), 37(5), 366–373. https://doi.org/10.1002/biof.154
  • Liu, X., Li, Q., Wang, Z., & Liu, F. (2021). Identification of abnormal protein expressions associated with mouse spermatogenesis induced by cyclophosphamide. Journal of Cellular and Molecular Medicine, 25(3), 1624-1632. https://doi.org/10.1111/jcmm.16263
  • Livak, KJ., & Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402–408
  • Masoumi, M., Salehi, M., Angaji, S. A., & Hashemi, M. (2021). Effects of coenzyme Q10 and diamond nanoparticles on ischemia-reperfusion-induced testicular damages in rats. Galen Medical Journal, 10, e2029. https://doi.org/10.31661/gmj.v10i0.2029
  • Najafi, M., Cheki, M., Amini, P., Javad, A., Shabeeb, D., & Eleojo Musa, A. (2019). Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. International Journal of Reproductive BioMedicine, 17(12), 1-8. https://doi.org/10.18502/ijrm.v17i12.5791
  • Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). Macmillan Learning.
  • Özatik, F. Y., Özatik, O., Tekşen, Y., Yiğitaslan, S., & Ari, N. S. (2021). Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turkish Journal of Medical Sciences, 51(3), 1530-1542. https://doi.org/10.3906/sag-2003-10
  • Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 101, 174–180. https://doi.org/10.1016/j.biopha.2018.02.068
  • Pravst, I., Žmitek, K., & Žmitek, J. (2010). Coenzyme Q10 contents in foods and fortification strategies. Critical Reviews in Food Science and Nutrition, 50(4), 269-280.
  • Reagan‐Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB journal, 22(3), 659-661.
  • Smorag, L., Zheng, Y., Nolte, J., Zechner, U., Engel, W., & Pantakani, D. V. K. (2012). MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203, and -34b-5p mediated spermatogenesis regulation. Biology of the Cell, 104(11), 677-692. https://doi.org/10.1111/boc.201200014
  • Üstündağ H. (2023). The Role of Antioxidants in Sepsis Management: A Review of Therapeutic Applications. Eurasian Mol Biochem Sci., 2(2):38-48.
  • Wu, Y., Li, H., Zhao, X., Baki, G., Ma, C., Yao, Y., Li, J., Yao, Y., & Wang, L. (2022). Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Frontiers in Genetics, 13, 970097. https://doi.org/10.3389/fgene.2022.970097
  • Yalçin, A., Keleş, H., Kahraman, T., Bozkurt, M. F., & Aydın, H. (2020). Protective effects of ellagic acid against chemotherapy-induced hepatotoxicity. Duzce Medical Journal, 22(2), 124-130..

Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10'un Koruyucu Rolü

Yıl 2025, Cilt: 15 Sayı: 3, 798 - 808, 01.09.2025
https://doi.org/10.21597/jist.1646028

Öz

Siklofosfamid (CPC) kanser tedavisinde sıklıkla kullanılan en eski antikanser ilaçlarından biridir. CPC’nin testis, spermatogenez, üreme hormonları üzerinde olumsuz etkileri olduğu bilinmektedir. Bu çalışma, infertilite tedavisinde kullanılan ve testis ile seminal sıvıda doğal olarak bulunan Koenzim Q10’un (CoQ10), CPC'nin testis dokusunda oluşturduğu hasarın onarılmasına etkisini belirlemeyi amaçlamıştır. 30 Albino Wistar erkek sıçan, her grupta 6 hayvan olacak şekilde 5 gruba [Kontrol, Siklofosfamid (CPC), Koenzim Q10 (CoQ10), CPC + CoQ10-I (CQ-I), CPC + CoQ10-II (CQ-II)] ayrıldı. Apoptotik (kaspaz-8, kaspaz-9, kaspaz-3, BAX, BCL2, ve BAK1), otofajik (ATG3, ATG5 ve LC3) ve nekrotik (RIPK1) hücre ölüm mekanizmalarındaki kavşak genlerin mRNA ekspresyon düzeyleri belirlendi. Toplam mRNA'dan cDNA sentezlendi. mRNA gen ekspresyon seviyeleri RT-qPCR ile tespit edildi. Tüm grup çalışmaları için p<0.05 istatistiksel olarak anlamlı kabul edildi. CPC’nin kontrol grubuna göre kaspaz-9, kaspaz-3 ve BAK1 mRNA düzeylerini artırdığı tespit edilmiştir (p<0.05). CPC ile birlikte CoQ10 uygulandığında, kaspaz-9, kaspaz-3 ve BAK1 genlerinin ekspresyon seviyelerini düşürdüğü (p<0.05) tespit edilmiştir. Ayrıca, BCL-2 gen ekspresyonunda istatistiksel olarak anlamlı bir artış (p<0.05) gözlemlenmiştir. Hem kontrol grubuna hem de CPC grubuna kıyasla CoQ10 uygulamasının BAX/BCL-2 oranını istatistiksel olarak azalttığı (p<0.05) ortaya konulmuştur. CPC, ATG3 ve LC3 mRNA ekspresyonunu düşürmüş, ancak CPC ile birlikte CoQ10 uygulaması LC3 ekspresyonunu artırmıştır (p<0.05); ayrıca RIPK1 seviyesi CQ-I grubunda CPC'ye göre azalmıştır (p<0.05). Sonuç olarak, CoQ10’un, siklofosfamidin (CPC) neden olduğu apoptozu düşürdüğü, otofajiyi düzenlendiği ve nekroptozu önlemede rol oynadığı ve hücre sağkalımını desteklediği tespit edilmiştir. Ancak klinik uygulamalar için daha geniş ve uzun vadeli çalışmalar gerekmektedir.

Kaynakça

  • Abdi, M., Fadaee, M., Jourabchi, A., Karimzadeh, H., & Kazemi, T. (2024). Cyclophosphamide-Induced Infertility and the Impact of Antioxidants. American journal of reproductive immunology (New York, N.Y. : 1989), 92(6), e70014. https://doi.org/10.1111/aji.70014
  • Ahlmann, M., & Hempel, G. (2016). The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemotherapy and Pharmacology, 78(4), 661-671. https://doi.org/10.1007/s00280-016-3152-1
  • Barcelos, I. P. de., & Haas, R. H. (2019). CoQ10 and aging. Biology, 8(2), 28. https://doi.org/10.3390/biology8020028
  • Bentinger, M., et al. (2007). The antioxidant role of coenzyme Q. Mitochondrion, 7(S41-S50).
  • Brock, N., & Wilmanns, H. (1958). Effect of a cyclic nitrogen mustard-phosphamidester on experimentally induced tumors in rats; chemotherapeutic effect and pharmacological properties of B518 ASTA [German]. Deutsche Medizinische Wochenschrift, 83, 453-458.
  • Cao, Y., Wang, X., Li, S., Wang, H., Yu, L., & Wang, P. (2017). The effects of L-carnitine against cyclophosphamide-induced injuries in mouse testis. Basic & Clinical Pharmacology & Toxicology, 120(2), 152-158. https://doi.org/10.1111/bcpt.12679
  • Chomczynski, P., & Mackey, K. (1995). Modification of the TRIZOL reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques, 19(6), 942-945.
  • Diemer, T., Allen, J. A., Hales, K. H., & Hales, D. B. (2003). Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology, 144(7), 2882-2891. https://doi.org/10.1210/en.2002-0090
  • El-Khadragy, M., Al-Megrin, W. A., AlSadhan, N. A., Metwally, D. M., El-Hennamy, R. E., Salem, F. E. H., Kassab, R. B., & Abdel Moneim, A. E. (2020). Impact of Coenzyme Q10 Administration on Lead Acetate-Induced Testicular Damage in Rats. Oxidative medicine and cellular longevity, 2020, 4981386. https://doi.org/10.1155/2020/4981386
  • Emadi, A., Jones, R. J., & Brodsky, R. A. (2009). Cyclophosphamide and cancer: golden anniversary. Nature reviews. Clinical oncology, 6(11), 638–647. https://doi.org/10.1038/nrclinonc.2009.146
  • Fusco, R., Salinaro, A. T., Siracusa, R., D’Amico, R., Impellizzeri, D., Scuto, M., Ontario, M. L., Crea, R., Cordaro, M., Cuzzocrea, S., Di Paola, R., & Calabrese, V. (2021). Hidrox® counteracts cyclophosphamide-induced male infertility through NRF2 pathways in a mouse model. Antioxidants, 10(5), 778. https://doi.org/10.3390/antiox10050778
  • Gajjar, R., Miller, S. D., Meyers, K. E., & Ginsberg, J. P. (2015). Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatric nephrology (Berlin, Germany), 30(7), 1099–1106. https://doi.org/10.1007/s00467-014-2897-1
  • Hargreaves, I., Heaton, R. A., & Mantle, D. (2020). Disorders of human coenzyme Q10 metabolism: An overview. International Journal of Molecular Sciences, 21(18), 6695. https://doi.org/10.3390/ijms21186695
  • Irani, S., Zhandi, M., Sadeghi, M., Yousefi, A. R., Marzban, H., & Rafieian-Naeini, H. R. (2022). The effect of dietary supplementation of coenzyme Q10 on reproductive variables of cadmium-challenged male Japanese quails (Coturnix Japonica). Veterinary Medicine and Science. https://doi.org/10.1002/vms3.990
  • Kehe, K., Balszuweit, F., Steinritz, D., & Thiermann, H. (2009). Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology, 263(1), 12–19. https://doi.org/10.1016/j.tox.2009.01.019
  • Koşal, V., Rua, İ., Yüksek, V., & Keleş, Ö. F. (2023). Investigation of the effect of Coenzyme-Q10 on cyclophosphamide-induced testicular damage in male rats. Revista Cientifica de la Facultad de Veterinaria, 33(2), 1-7.
  • Li, J., You, Y., Zhang, P., Huang, X., Dong, L., Yang, F., Yu, X., & Chang, D. (2022). Qiangjing tablets repair of blood-testis barrier dysfunction in rats via regulating oxidative stress and p38 MAPK pathway. BMC Complementary Medicine and Therapies, 22(1), 133. https://doi.org/10.1186/s12906-022-03615-z
  • Littarru, G. P., Tiano, L., Belardinelli, R., & Watts, G. F. (2011). Coenzyme Q(10) , endothelial function, and cardiovascular disease. BioFactors (Oxford, England), 37(5), 366–373. https://doi.org/10.1002/biof.154
  • Liu, X., Li, Q., Wang, Z., & Liu, F. (2021). Identification of abnormal protein expressions associated with mouse spermatogenesis induced by cyclophosphamide. Journal of Cellular and Molecular Medicine, 25(3), 1624-1632. https://doi.org/10.1111/jcmm.16263
  • Livak, KJ., & Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402–408
  • Masoumi, M., Salehi, M., Angaji, S. A., & Hashemi, M. (2021). Effects of coenzyme Q10 and diamond nanoparticles on ischemia-reperfusion-induced testicular damages in rats. Galen Medical Journal, 10, e2029. https://doi.org/10.31661/gmj.v10i0.2029
  • Najafi, M., Cheki, M., Amini, P., Javad, A., Shabeeb, D., & Eleojo Musa, A. (2019). Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. International Journal of Reproductive BioMedicine, 17(12), 1-8. https://doi.org/10.18502/ijrm.v17i12.5791
  • Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). Macmillan Learning.
  • Özatik, F. Y., Özatik, O., Tekşen, Y., Yiğitaslan, S., & Ari, N. S. (2021). Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turkish Journal of Medical Sciences, 51(3), 1530-1542. https://doi.org/10.3906/sag-2003-10
  • Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 101, 174–180. https://doi.org/10.1016/j.biopha.2018.02.068
  • Pravst, I., Žmitek, K., & Žmitek, J. (2010). Coenzyme Q10 contents in foods and fortification strategies. Critical Reviews in Food Science and Nutrition, 50(4), 269-280.
  • Reagan‐Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB journal, 22(3), 659-661.
  • Smorag, L., Zheng, Y., Nolte, J., Zechner, U., Engel, W., & Pantakani, D. V. K. (2012). MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203, and -34b-5p mediated spermatogenesis regulation. Biology of the Cell, 104(11), 677-692. https://doi.org/10.1111/boc.201200014
  • Üstündağ H. (2023). The Role of Antioxidants in Sepsis Management: A Review of Therapeutic Applications. Eurasian Mol Biochem Sci., 2(2):38-48.
  • Wu, Y., Li, H., Zhao, X., Baki, G., Ma, C., Yao, Y., Li, J., Yao, Y., & Wang, L. (2022). Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Frontiers in Genetics, 13, 970097. https://doi.org/10.3389/fgene.2022.970097
  • Yalçin, A., Keleş, H., Kahraman, T., Bozkurt, M. F., & Aydın, H. (2020). Protective effects of ellagic acid against chemotherapy-induced hepatotoxicity. Duzce Medical Journal, 22(2), 124-130..
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Biyoloji / Biology
Yazarlar

Veysel Yüksek 0000-0001-7432-4989

Semiha Dede 0000-0001-5744-6327

Ayşe Usta 0000-0002-5522-3469

Volkan Koşal 0000-0001-5268-5046

Erken Görünüm Tarihi 31 Ağustos 2025
Yayımlanma Tarihi 1 Eylül 2025
Gönderilme Tarihi 24 Şubat 2025
Kabul Tarihi 11 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Yüksek, V., Dede, S., Usta, A., Koşal, V. (2025). Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü. Journal of the Institute of Science and Technology, 15(3), 798-808. https://doi.org/10.21597/jist.1646028
AMA Yüksek V, Dede S, Usta A, Koşal V. Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2025;15(3):798-808. doi:10.21597/jist.1646028
Chicago Yüksek, Veysel, Semiha Dede, Ayşe Usta, ve Volkan Koşal. “Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü”. Journal of the Institute of Science and Technology 15, sy. 3 (Eylül 2025): 798-808. https://doi.org/10.21597/jist.1646028.
EndNote Yüksek V, Dede S, Usta A, Koşal V (01 Eylül 2025) Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü. Journal of the Institute of Science and Technology 15 3 798–808.
IEEE V. Yüksek, S. Dede, A. Usta, ve V. Koşal, “Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü”, Iğdır Üniv. Fen Bil Enst. Der., c. 15, sy. 3, ss. 798–808, 2025, doi: 10.21597/jist.1646028.
ISNAD Yüksek, Veysel vd. “Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü”. Journal of the Institute of Science and Technology 15/3 (Eylül2025), 798-808. https://doi.org/10.21597/jist.1646028.
JAMA Yüksek V, Dede S, Usta A, Koşal V. Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü. Iğdır Üniv. Fen Bil Enst. Der. 2025;15:798–808.
MLA Yüksek, Veysel vd. “Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü”. Journal of the Institute of Science and Technology, c. 15, sy. 3, 2025, ss. 798-0, doi:10.21597/jist.1646028.
Vancouver Yüksek V, Dede S, Usta A, Koşal V. Sıçan Testis Dokusunda Siklofosfamid ile Tetiklenen Apoptoz, Nekroz ve Otofaji Yollarının Modülasyonunda Koenzim Q10’un Koruyucu Rolü. Iğdır Üniv. Fen Bil Enst. Der. 2025;15(3):798-80.