Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuz Stresi Altında Tane Sorgum Fide Dokularında Antioksidan Enzimler ve Toplam Fenolik Bileşiklerdeki Değişimler

Yıl 2025, Cilt: 22 Sayı: 4, 865 - 879, 03.10.2025
https://doi.org/10.33462/jotaf.1500854

Öz

Sorgum (Sorghum spp), hayvan yemi ve insan gıdası olarak kullanılan, dünyanın önemli sıcak iklim tahıllarından biridir. Sorgum, tuzlu topraklara ve çeşitli iklim koşullarına diğer tahıllardan daha iyi uyum sağlamaktadır. Tuz stresi, bitki büyümesini, gelişimini, verimi ve kalitesini belirgin şekilde sınırlamaktadır. Bu çalışma, tuz stresi altında sorgumdaki antioksidan savunma enzimleri ile toplam fenol bileşiklerindeki değişiklikleri araştırmak amacıyla yapılmıştır. Hoagland besin ortamında tutulan Acme Brom Corn sorgum çeşidine farklı tuzluluk düzeyleri (0, 50, 100, 150 ve 200 mM NaCl) uygulanarak; kontrollü koşullarda, tuz stresinde ve stres olmadan 10’ar gün iklim kabininde tutulan deneyler 3 tekrarlı yürütülmüştür. Deneylerin sonunda, bitki kökleri ve yaprakları ayrı ayrı hasat edilip, harmanlanmış; 0,5 ve 0,25 g'lık kısımlar halinde alüminyum folyolara yerleştirilmiş, ardından sıvı nitrojende şoklanarak -20 °C'de saklanmıştır. Daha sonra tuz stresi kaynaklı antioksidan enzimler; klorofil ve karotenler spektrofotometrik olarak belirlenmiştir. Kök glutatyon redüktaz (GR), prolin ve ascorbate peroxidase (APX) aktivitesi arasındaki korelasyonlar istatistiki olarak anlamlı bulunmuştur. Antiradikal kapasite, glutatyon S-Transferaz (GST), MDA, toplam fenolikler, katalaz (CAT) ve süperoksit dismutaz (SOD) aktivitesi arasındaki korelasyonlar da anlamlı bulunmuştur. Yaprak SOD, toplam fenolikler ve GST arasındaki, yaprak Chl a, CAT, antiradikal kapasite ve yaprak APX ile Chl a arasındaki, toplam Chl ile karoten arasındaki, GR ile Chl b arasındaki ve MDA ile prolin arasındaki korelasyonlar anlamlı bulunmuştur. Artan antioksidan enzim aktivitesi ve toplam fenolikler, sorgum bitkilerinin tuz stresi direncine destek sağlasa da, bu mekanizmalar yüksek tuzluluk düzeylerinde yeterli olmadığı için tuz stresi ile antioksidan enzim aktiviteleri arasındaki ilişkilerin daha iyi anlaşılması için daha yüksek olan tuz dozlarında, irdelenen karakterler bakımından kullanılan sorgum çeşidinin denemeye alınmasının gerektiği sonucuna varılmıştır. Kuşkusuz elde edilen bulgular genelleştirilememeli, elde edilen sonuçların deneme yılına, genotipe, kullanılan tuz dozlar ile ilgili enzim aktiviteleri, ile uygulanan yöntemlere bağlı olduğu gözden ırak tutulmamalıdır.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Destekleyen Kurum

Erciyes University

Proje Numarası

FCD-2014-4937

Teşekkür

This study was supported by the Erciyes University Research Fund (grand No: FCD-2014-4937).

Kaynakça

  • Abrahám, E., Rigó, G., Székely, G., Nagy, R., Koncz, C. and Szabados, L. (2003). Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroids in Arabidopsis. Plant Molecular Biology, 51: 363-372.
  • Agastian, P., Kingsley, S. J. and Vivekanandan, M. (2000). Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38: 287-290.
  • Ahmad, P., Hakeem, K. R., Kumar, A., Ashraf, M. and Akram, N.A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11): 2694-2703.
  • Ahmad, P., Nabi, G. and Ashraf, M. (2011). Cadmium-induced oxidative stress in mustard [Brassica juncea (L.) Czern. and Coss] plants can be alleviated by salicylic acid. South African Journal of Botany, 77: 36-44.
  • Akbulut, M. and Çakır, S. (2010). The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiology and Biochemistry, 48(2-3): 160-166.
  • Akram, M. S. and Ashraf, M. (2011). Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflowers (Helianthus annuus L.). Journal of Plant Nutrition, 34: 1041-1057.
  • Alia Saradhi, P. P. and Mohanty, P. (1993). Proline with free radical production in seedlings of Brassica juncea raised under sodium chloride stress. In Plant Nutrition-from Genetic Engineering to Field Practice: Proceedings of the Twelfth International Plant Nutrition Colloquium, 21–26 September 1993, Perth, Western Australia (pp. 731-734). Springer Netherlands.
  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M. and Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123(3): 1047-1056.
  • Arshi, A., Ahmad, A., Aref, I. M. and Iqbal, M. (2012). Comparative studies on antioxidant enzyme action and ion accumulation in soybean cultivars under salinity stress. Journal of Environmental Biology, 33: 9-20.
  • Arzani, A. (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular and Developmental Biology-Plant, 44: 373-383.
  • Asada, K. and Takahashi, M. (1987) Production and Scavenging of Active Oxygen in Photosynthesis. In: Photoinhibition, Eds: Kyle, D. J., Osmond, C. B. and Arntzen, C. J., Elsevier, Amsterdam, Holland.
  • Ashraf, M. P. J. C. and Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Ashraf, M. Y. and Bhatti, A. S. (2000). Effect of salinity on growth and chlorophyll content in rice. Biological Sciences-PJSIR, 43: 130-131.
  • Ayana, A. and Bekele, E. (2000). Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: quantitative characters. Euphytica, 115: 91-104.
  • Azooz, M. M., Alzahrani, A. M. and Youssef, M. M. (2013). The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Australian Journal of Crop Science, 7(13): 2091-2100.
  • Beyaz, R. and Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv. Leo. Journal of Tekirdag Agricultural Faculty, 21(1): 24-34. [In Turkish]
  • Bor, M., Ozdemir, F. and Turkan, I. (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritma L. Plant Science, 164: 77-84.
  • Boursier, P. and Läuchli A. (1990) Growth responses and mineral nutrient relations of salt‐stressed sorghum. Crop Science 30(6): 1226-1233.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
  • Cherian, S. and Reddy, M. P. (2003). Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora. Moq. Biologia Plantarum, 46: 193-198.
  • Dajic, Z. (2006). Salt Stress. In: Physiology and Molecular Biology of Stress Tolerance In Plants, Ed(s): Madhava Rao, K. V., Raghavendra, A. S. and Janardhan Reddy, K. Springer, Netherlands.
  • Dionisio-Sese, M. L. and Tobita, S. (1999). Antioxidative responses of shoots and roots of wheat to increasing NaCl concentration. Journal of Plant Physiology, 155: 274-280.
  • Djilianov, D., Georgieva, T., Moyankova, D., Atanassov, A., Shinozaki, K., Smeeken, S. C. M., Verma, D. P. S. and Murata, N. (2005) Improved abiotic stress tolerance in the plant by the accumulation of osmoprotectants gene transfer approach. Biotechnology and Biotechnological Equipment, 19: 63–71.
  • Esen, S., Okuyucu, B., Koc, F. and Özdüven, L. (2022). Determination of nutritional quality and aerobic stability of sorghum, maize, and sorghum-maize mixture silages. Journal of Tekirdag Agricultural Faculty, 19(1): 61-69. [In Turkish]
  • Foyer, C. H., Descourvieres, P. and Kunert, K. J. (1994). Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environment, 17: 507-523.
  • Giannopolitis, C. N. and Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2): 309-314.
  • Gossett, D. R., Millhollon, E. P. and Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34: 706-714.
  • Hare, P. D. and Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102.
  • Hare, P. D., Cress. W. A. and Van Staden, J. (1999). Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of Experimental Botany, 50(333): 413-434.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51: 463-499.
  • Hideg, E. (1997). Free Radical Production in Photosynthesis Under Stress Conditions. In: Handbook of Photosynthesis, Ed(s): Pessarakli, M. and Decker, M. CRC Press, New York, U.S.A.
  • Hiscox, J. D. and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian journal of Botany, 57(12): 1332-1334.
  • Hoque, M. N., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164: 553-561.
  • Hossain, A.A., Halim, M. A., Hossain, F. and Meher Niger, M. A., (2006). Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.). Bangladesh Journal of Botany, 35: 9-15.
  • Kaplan, M., Kale, H., Kardes, Y. M., Karaman, K., Kahraman, K., Yılmaz, M. F., Temizgül, R. and Akar, T. (2020). Characterization of local sorghum (Sorghum bicolor L.) population grains in terms of nutritional properties and evaluation by GT biplot approach. Starch‐Stärke, 72(3-4): 1900232.
  • Karabal, E., Yücel, M. and Öktem, H. A. (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6): 925-933.
  • Kardeş, Y. M., Kaplan, M., Kale, H., Yılmaz, M. F., Karaman, K., Temizgül, R. and Akar, T. (2021). Biochemical composition of selected lines from sorghum (Sorghum bicolor L.) landraces. Planta, 254: 1-13.
  • Khan, M. A., Shirazi, M. U, Alikhan, M. and Ashraf, M. (2009). Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 41(2): 633-638.
  • Krell, A., Funck, D., Plettner, I., John, U. and Dieckmann, G. (2007). Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae) 1. Journal of Phycology, 43(4): 753-762.
  • Lacerda, C. F., Cambraia, J., Cano, M. A. O. and Ruiz, H. A., (2001). Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Revista Brasileira de Fisiologia Vegetal, 13: 270-284.
  • Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H.A. and Prisco, J. T, (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49(2): 107-120.
  • Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27(4): 969-978.
  • Latef, A. A. H. A. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3): 228-233.
  • Lipkovich, I. A. and Smith, E. P. (2002). Biplot and singular value decomposition macros for Excel©. Journal of Statistical Software, 7(1): 1-15.
  • Liu, J., Wu, Y., Dong, G., Zhu, G., and Zhou, G. (2023). Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. International Journal of Molecular Sciences, 24(7): 6777.
  • Madhava Rao, K. V. and Sresty, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157(1): 113-128.
  • Mahajan, S. and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2): 139-158.
  • Metwally, A., Safronova Belimov, A. and Dietz, K. J. (2004). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56: 167-178.
  • Misra, N. and Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163(1): 11-18.
  • Mittal, S., Kumari, N. and Sharma, V. (2012). Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 54: 17-26.
  • Moradi, F. and Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annual Botany, 99(6): 1161-1173.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2): 239-250.
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-663.
  • Nazar, R., Iqbal, N., Syeed, S. and Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. Journal of Plant Physiology. 168: 807-815.
  • Noctor, G. and Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49(1): 249-279.
  • Noreen, Z. and Ashraf M, (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67(2): 395-402.
  • Noreen, Z., Ashraf, M. and Akram, N.A. (2010). Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. Crop Pasture Science, 61: 369-378.
  • Nounjan, N., Nghia, P. T. and Theerakulpisut, P. (2012). Exogenous proline and trehalose promote the recovery of rice seedlings from salt stress and differentially modulate antioxidant enzymes and the expression of related genes. Journal of Plant Physiology, 169: 596-604.
  • Oncel, I. and Keles, Y. (2002). Changes of growth, chlorophyll content and solute composition in wheat genotypes under salt stress. Ç.Ü. Fen–Edb. Fak. Fen Bilimleri Dergisi, 23(2): 1-16. [In Turkish]
  • Ozden, M., Demirel, U. and Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2): 163-168.
  • Queiros, F., Rodrigues, J. A., Almeida, J. M., Almeida, D. P. and Fidalgo, F. (2011). Differential responses of the antioxidant defense system and ultrastructure in a salt-adapted potato cell line. Plant Physiology and Biochemistry, 49: 1410-1419.
  • Rasool, S., Ahmad, A., Siddiqi, T. O. and Ahmad, P., (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiology Plant, 35(4): 1039-1050.
  • Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K. and Kishor, P. K. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry, 94: 104-113.
  • Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103: 93-99.
  • Scandalios, J. G. (1993). Oxygen stress and superoxide dismutase. Plant Physiology, 101: 7-12.
  • Scandalios, J. G. (1997). Molecular Genetics of Superoxide Dismutases in Plants. In: Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Ed(s): Scandalios, J.G., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
  • Shalata, A. and Tal, M. (1998). The effect of salt stress on lipid peroxidation and antioxidants in the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiology Plant, 104: 169-174.
  • Sharma, S. and Verslues, P.E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ, 33(11): 1838-1851.
  • Statistical Analysis System Institute. (1999). SAS/STAT User's Guide (Vol. 3). SAS Publications.
  • Tilak, K. V. B. R., Pal, K. K. and Dey, R. (2010) Microbes for Sustainable Agriculture. IK International Pub Ltd, New Delhi, India.
  • Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C. J. and Vieira, L. G. E. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164: 1367-1376.
  • Wambua, J. M., Makobe, M. N., Njue, E. M. and Nyende, B. A. (2011). Hydroponic screening of Sorghum (Sorghum bicolor L. Moench) cultivars for salinity tolerance. Journal of Agriculture, Science and Technology, 12(2): 82-91.
  • Wang, W., Vinocur, B. and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.
  • Wang, X., He, X., Fan, Y., and Guo, D. (2022). Effects of salt stress on seed germination and seeding antioxidant enzyme activities of Sweet Sorgjum. Molecular. Plant Breeding, 20: 4462-4467.
  • Yasar, F., Ellialtioglu, S. and Yildiz, K. (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology, 55: 782-786.
  • Yilmaz, S. H., Kaplan, M., Temizgul, R., and Yilmaz, S. (2017). Antioxidant enzyme response of sorghum plant upon exposure to aluminum, chromium and lead heavy metals. Turkish Journal of Biochemistry, 42(4): 503-512.
  • Yin, L. N., Wang, S. W., Tanaka, K., Fujihara, S., Itai, A., Den, X. P., and Zhang, S. Q. (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor (L.). Plant Cell Environment, 39: 245–258.

Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress

Yıl 2025, Cilt: 22 Sayı: 4, 865 - 879, 03.10.2025
https://doi.org/10.33462/jotaf.1500854

Öz

Sorghum (Sorghum spp) is one of the world's significant warm-climate cereals, used both as animal feed and human food. It demonstrates better adaptation to saline soils and diverse climatic conditions compared to other cereals. Salt stress significantly limits plant growth, development, yield, and quality. This study aimed to investigate the changes in antioxidant defense enzymes and total phenolic compounds in sorghum under salt stress. Different salinity levels (0, 50, 100, 150, and 200 mM NaCl) were applied to the Acme Brom Corn sorghum variety grown in Hoagland nutrient medium. The experiments were conducted under controlled conditions in a climate chamber for 10 days, both under salt stress and non-stress conditions, with three replicates. At the end of the experiments, the roots and leaves of the plants were harvested separately, homogenized, and placed in aluminium foil in portions of 0.5 g and 0.25 g, shock-frozen in liquid nitrogen, and stored at -20 °C. Antioxidant enzymes induced by salt stress, as well as chlorophyll and carotenoids, were determined spectrophotometrically. Statistically significant correlations were found between root glutathione reductase (GR), proline, and ascorbate peroxidase (APX) activities, and between antiradical capacity, glutathione S-transferase (GST), MDA, total phenolics, catalase (CAT), and superoxide dismutase (SOD) activities. In leaves, significant correlations were observed between SOD, total phenolics, and GST, as well as between Chl a, CAT, antiradical capacity, APX, and carotenoids. Significant correlations were also identified between total chlorophyll and carotenoids, GR and Chl b, and MDA and proline. Although increased antioxidant enzyme activity and total phenolics support the salt stress resistance of sorghum plants, these mechanisms were insufficient at high salinity levels. Therefore, it was concluded that further studies are needed to better understand the relationships between salt stress and antioxidant enzyme activities at higher salt concentrations using the investigated sorghum variety. It should be noted that the findings should not be generalized, as the results depend on the experimental year, genotype, salt doses applied, enzyme activities investigated, and methods used.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Destekleyen Kurum

Erciyes University

Proje Numarası

FCD-2014-4937

Teşekkür

This study was supported by the Erciyes University Research Fund (grand No: FCD-2014-4937).

Kaynakça

  • Abrahám, E., Rigó, G., Székely, G., Nagy, R., Koncz, C. and Szabados, L. (2003). Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroids in Arabidopsis. Plant Molecular Biology, 51: 363-372.
  • Agastian, P., Kingsley, S. J. and Vivekanandan, M. (2000). Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38: 287-290.
  • Ahmad, P., Hakeem, K. R., Kumar, A., Ashraf, M. and Akram, N.A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11): 2694-2703.
  • Ahmad, P., Nabi, G. and Ashraf, M. (2011). Cadmium-induced oxidative stress in mustard [Brassica juncea (L.) Czern. and Coss] plants can be alleviated by salicylic acid. South African Journal of Botany, 77: 36-44.
  • Akbulut, M. and Çakır, S. (2010). The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiology and Biochemistry, 48(2-3): 160-166.
  • Akram, M. S. and Ashraf, M. (2011). Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflowers (Helianthus annuus L.). Journal of Plant Nutrition, 34: 1041-1057.
  • Alia Saradhi, P. P. and Mohanty, P. (1993). Proline with free radical production in seedlings of Brassica juncea raised under sodium chloride stress. In Plant Nutrition-from Genetic Engineering to Field Practice: Proceedings of the Twelfth International Plant Nutrition Colloquium, 21–26 September 1993, Perth, Western Australia (pp. 731-734). Springer Netherlands.
  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M. and Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123(3): 1047-1056.
  • Arshi, A., Ahmad, A., Aref, I. M. and Iqbal, M. (2012). Comparative studies on antioxidant enzyme action and ion accumulation in soybean cultivars under salinity stress. Journal of Environmental Biology, 33: 9-20.
  • Arzani, A. (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular and Developmental Biology-Plant, 44: 373-383.
  • Asada, K. and Takahashi, M. (1987) Production and Scavenging of Active Oxygen in Photosynthesis. In: Photoinhibition, Eds: Kyle, D. J., Osmond, C. B. and Arntzen, C. J., Elsevier, Amsterdam, Holland.
  • Ashraf, M. P. J. C. and Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Ashraf, M. Y. and Bhatti, A. S. (2000). Effect of salinity on growth and chlorophyll content in rice. Biological Sciences-PJSIR, 43: 130-131.
  • Ayana, A. and Bekele, E. (2000). Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: quantitative characters. Euphytica, 115: 91-104.
  • Azooz, M. M., Alzahrani, A. M. and Youssef, M. M. (2013). The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Australian Journal of Crop Science, 7(13): 2091-2100.
  • Beyaz, R. and Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv. Leo. Journal of Tekirdag Agricultural Faculty, 21(1): 24-34. [In Turkish]
  • Bor, M., Ozdemir, F. and Turkan, I. (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritma L. Plant Science, 164: 77-84.
  • Boursier, P. and Läuchli A. (1990) Growth responses and mineral nutrient relations of salt‐stressed sorghum. Crop Science 30(6): 1226-1233.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
  • Cherian, S. and Reddy, M. P. (2003). Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora. Moq. Biologia Plantarum, 46: 193-198.
  • Dajic, Z. (2006). Salt Stress. In: Physiology and Molecular Biology of Stress Tolerance In Plants, Ed(s): Madhava Rao, K. V., Raghavendra, A. S. and Janardhan Reddy, K. Springer, Netherlands.
  • Dionisio-Sese, M. L. and Tobita, S. (1999). Antioxidative responses of shoots and roots of wheat to increasing NaCl concentration. Journal of Plant Physiology, 155: 274-280.
  • Djilianov, D., Georgieva, T., Moyankova, D., Atanassov, A., Shinozaki, K., Smeeken, S. C. M., Verma, D. P. S. and Murata, N. (2005) Improved abiotic stress tolerance in the plant by the accumulation of osmoprotectants gene transfer approach. Biotechnology and Biotechnological Equipment, 19: 63–71.
  • Esen, S., Okuyucu, B., Koc, F. and Özdüven, L. (2022). Determination of nutritional quality and aerobic stability of sorghum, maize, and sorghum-maize mixture silages. Journal of Tekirdag Agricultural Faculty, 19(1): 61-69. [In Turkish]
  • Foyer, C. H., Descourvieres, P. and Kunert, K. J. (1994). Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environment, 17: 507-523.
  • Giannopolitis, C. N. and Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2): 309-314.
  • Gossett, D. R., Millhollon, E. P. and Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34: 706-714.
  • Hare, P. D. and Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102.
  • Hare, P. D., Cress. W. A. and Van Staden, J. (1999). Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of Experimental Botany, 50(333): 413-434.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51: 463-499.
  • Hideg, E. (1997). Free Radical Production in Photosynthesis Under Stress Conditions. In: Handbook of Photosynthesis, Ed(s): Pessarakli, M. and Decker, M. CRC Press, New York, U.S.A.
  • Hiscox, J. D. and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian journal of Botany, 57(12): 1332-1334.
  • Hoque, M. N., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164: 553-561.
  • Hossain, A.A., Halim, M. A., Hossain, F. and Meher Niger, M. A., (2006). Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.). Bangladesh Journal of Botany, 35: 9-15.
  • Kaplan, M., Kale, H., Kardes, Y. M., Karaman, K., Kahraman, K., Yılmaz, M. F., Temizgül, R. and Akar, T. (2020). Characterization of local sorghum (Sorghum bicolor L.) population grains in terms of nutritional properties and evaluation by GT biplot approach. Starch‐Stärke, 72(3-4): 1900232.
  • Karabal, E., Yücel, M. and Öktem, H. A. (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6): 925-933.
  • Kardeş, Y. M., Kaplan, M., Kale, H., Yılmaz, M. F., Karaman, K., Temizgül, R. and Akar, T. (2021). Biochemical composition of selected lines from sorghum (Sorghum bicolor L.) landraces. Planta, 254: 1-13.
  • Khan, M. A., Shirazi, M. U, Alikhan, M. and Ashraf, M. (2009). Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 41(2): 633-638.
  • Krell, A., Funck, D., Plettner, I., John, U. and Dieckmann, G. (2007). Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae) 1. Journal of Phycology, 43(4): 753-762.
  • Lacerda, C. F., Cambraia, J., Cano, M. A. O. and Ruiz, H. A., (2001). Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Revista Brasileira de Fisiologia Vegetal, 13: 270-284.
  • Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H.A. and Prisco, J. T, (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49(2): 107-120.
  • Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27(4): 969-978.
  • Latef, A. A. H. A. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3): 228-233.
  • Lipkovich, I. A. and Smith, E. P. (2002). Biplot and singular value decomposition macros for Excel©. Journal of Statistical Software, 7(1): 1-15.
  • Liu, J., Wu, Y., Dong, G., Zhu, G., and Zhou, G. (2023). Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. International Journal of Molecular Sciences, 24(7): 6777.
  • Madhava Rao, K. V. and Sresty, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157(1): 113-128.
  • Mahajan, S. and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2): 139-158.
  • Metwally, A., Safronova Belimov, A. and Dietz, K. J. (2004). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56: 167-178.
  • Misra, N. and Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163(1): 11-18.
  • Mittal, S., Kumari, N. and Sharma, V. (2012). Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 54: 17-26.
  • Moradi, F. and Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annual Botany, 99(6): 1161-1173.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2): 239-250.
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-663.
  • Nazar, R., Iqbal, N., Syeed, S. and Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. Journal of Plant Physiology. 168: 807-815.
  • Noctor, G. and Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49(1): 249-279.
  • Noreen, Z. and Ashraf M, (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67(2): 395-402.
  • Noreen, Z., Ashraf, M. and Akram, N.A. (2010). Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. Crop Pasture Science, 61: 369-378.
  • Nounjan, N., Nghia, P. T. and Theerakulpisut, P. (2012). Exogenous proline and trehalose promote the recovery of rice seedlings from salt stress and differentially modulate antioxidant enzymes and the expression of related genes. Journal of Plant Physiology, 169: 596-604.
  • Oncel, I. and Keles, Y. (2002). Changes of growth, chlorophyll content and solute composition in wheat genotypes under salt stress. Ç.Ü. Fen–Edb. Fak. Fen Bilimleri Dergisi, 23(2): 1-16. [In Turkish]
  • Ozden, M., Demirel, U. and Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2): 163-168.
  • Queiros, F., Rodrigues, J. A., Almeida, J. M., Almeida, D. P. and Fidalgo, F. (2011). Differential responses of the antioxidant defense system and ultrastructure in a salt-adapted potato cell line. Plant Physiology and Biochemistry, 49: 1410-1419.
  • Rasool, S., Ahmad, A., Siddiqi, T. O. and Ahmad, P., (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiology Plant, 35(4): 1039-1050.
  • Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K. and Kishor, P. K. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry, 94: 104-113.
  • Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103: 93-99.
  • Scandalios, J. G. (1993). Oxygen stress and superoxide dismutase. Plant Physiology, 101: 7-12.
  • Scandalios, J. G. (1997). Molecular Genetics of Superoxide Dismutases in Plants. In: Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Ed(s): Scandalios, J.G., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
  • Shalata, A. and Tal, M. (1998). The effect of salt stress on lipid peroxidation and antioxidants in the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiology Plant, 104: 169-174.
  • Sharma, S. and Verslues, P.E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ, 33(11): 1838-1851.
  • Statistical Analysis System Institute. (1999). SAS/STAT User's Guide (Vol. 3). SAS Publications.
  • Tilak, K. V. B. R., Pal, K. K. and Dey, R. (2010) Microbes for Sustainable Agriculture. IK International Pub Ltd, New Delhi, India.
  • Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C. J. and Vieira, L. G. E. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164: 1367-1376.
  • Wambua, J. M., Makobe, M. N., Njue, E. M. and Nyende, B. A. (2011). Hydroponic screening of Sorghum (Sorghum bicolor L. Moench) cultivars for salinity tolerance. Journal of Agriculture, Science and Technology, 12(2): 82-91.
  • Wang, W., Vinocur, B. and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.
  • Wang, X., He, X., Fan, Y., and Guo, D. (2022). Effects of salt stress on seed germination and seeding antioxidant enzyme activities of Sweet Sorgjum. Molecular. Plant Breeding, 20: 4462-4467.
  • Yasar, F., Ellialtioglu, S. and Yildiz, K. (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology, 55: 782-786.
  • Yilmaz, S. H., Kaplan, M., Temizgul, R., and Yilmaz, S. (2017). Antioxidant enzyme response of sorghum plant upon exposure to aluminum, chromium and lead heavy metals. Turkish Journal of Biochemistry, 42(4): 503-512.
  • Yin, L. N., Wang, S. W., Tanaka, K., Fujihara, S., Itai, A., Den, X. P., and Zhang, S. Q. (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor (L.). Plant Cell Environment, 39: 245–258.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hububat Teknolojisi, Agronomi, Tarımda Bitki Biyokimyası ve Fizyolojisi
Bölüm Makaleler
Yazarlar

Mahmut Kaplan 0000-0002-6717-4115

Rıdvan Temizgül 0000-0002-1033-7067

Semih Yılmaz 0000-0003-4835-1494

Yusuf Murat Kardeş 0000-0001-7144-9612

İhsan Serkan Varol 0000-0001-8474-4514

Beyza Çiftçi 0000-0002-3080-0880

Proje Numarası FCD-2014-4937
Erken Görünüm Tarihi 29 Eylül 2025
Yayımlanma Tarihi 3 Ekim 2025
Gönderilme Tarihi 13 Haziran 2024
Kabul Tarihi 10 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 4

Kaynak Göster

APA Kaplan, M., Temizgül, R., Yılmaz, S., … Kardeş, Y. M. (2025). Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress. Tekirdağ Ziraat Fakültesi Dergisi, 22(4), 865-879. https://doi.org/10.33462/jotaf.1500854
AMA Kaplan M, Temizgül R, Yılmaz S, Kardeş YM, Varol İS, Çiftçi B. Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress. JOTAF. Ekim 2025;22(4):865-879. doi:10.33462/jotaf.1500854
Chicago Kaplan, Mahmut, Rıdvan Temizgül, Semih Yılmaz, Yusuf Murat Kardeş, İhsan Serkan Varol, ve Beyza Çiftçi. “Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress”. Tekirdağ Ziraat Fakültesi Dergisi 22, sy. 4 (Ekim 2025): 865-79. https://doi.org/10.33462/jotaf.1500854.
EndNote Kaplan M, Temizgül R, Yılmaz S, Kardeş YM, Varol İS, Çiftçi B (01 Ekim 2025) Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress. Tekirdağ Ziraat Fakültesi Dergisi 22 4 865–879.
IEEE M. Kaplan, R. Temizgül, S. Yılmaz, Y. M. Kardeş, İ. S. Varol, ve B. Çiftçi, “Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress”, JOTAF, c. 22, sy. 4, ss. 865–879, 2025, doi: 10.33462/jotaf.1500854.
ISNAD Kaplan, Mahmut vd. “Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress”. Tekirdağ Ziraat Fakültesi Dergisi 22/4 (Ekim2025), 865-879. https://doi.org/10.33462/jotaf.1500854.
JAMA Kaplan M, Temizgül R, Yılmaz S, Kardeş YM, Varol İS, Çiftçi B. Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress. JOTAF. 2025;22:865–879.
MLA Kaplan, Mahmut vd. “Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress”. Tekirdağ Ziraat Fakültesi Dergisi, c. 22, sy. 4, 2025, ss. 865-79, doi:10.33462/jotaf.1500854.
Vancouver Kaplan M, Temizgül R, Yılmaz S, Kardeş YM, Varol İS, Çiftçi B. Alterations of Antioxidative Enzymes and Total Phenolics of Grain Sorghum Seedling Tissues Under Salt Stress. JOTAF. 2025;22(4):865-79.