BibTex RIS Kaynak Göster

9. SINIF ÖĞRENCİLERİNİN FONKSİYON KAVRAMINDA NOTASYONEL HATALARI VE BAZI KAVRAM YANILGILARI

Yıl 2014, Cilt: 15 Sayı: 1, 53 - 63, 01.01.2014

Öz

Bu çalışma, 9. sınıf öğrencilerinin “y=f x ” sembolünü anlamalarına yönelik nitel bir araştırmadır. Araştırmaya, iki 9. sınıftan toplam 40 öğrenci katılmıştır. Verilerin analizinde betimsel analiz yöntemi kullanılmıştır. Öğrencilerin fonksiyon kavramının sembolik gösterimini anlamalarını tespit etmek için, öğrencilerden, “m, n’nin bir fonksiyonudur” ifadesini simgesel olarak göstermeleri, bir örnek vermeleri ve böyle bir fonksiyonun m’ yi n’ ye mi yoksa n’ yi m’ ye mi eşleyeceğini belirtmeleri istenmiştir. 2. soruda ise reel sayılarda tanımlı p=f s =s+1 ve k=g s =2s fonksiyonları verilerek, öğrencilerden p’ yi k’ nın fonksiyonu olarak yazmaları istenmiştir. Genel olarak bakıldığında, öğrencilerin fonksiyon kavramındaki notasyon ve ifadeleri anlama ve aralarındaki fonksiyonel ilişkileri kurmada önemli derecede başarısız oldukları ve çeşitli yanlış anlamalara sahip oldukları belirlenmiştir.

Kaynakça

  • Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247- 285.
  • Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A.F. Coxford & A. P. Schulte (Eds.), The ideas of algebra, K-12, 1988 Yearbook, (pp. 20-32), Reston, Va.: NCTM.
  • Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education III, CBMS Issues in Mathematics Education, 7, 114–163.
  • Dikici, R., & İşleyen, T. (2003). Bağıntı ve fonksiyon konusundaki öğrenme güçlüklerinin bazı değişkenler açısından incelenmesi. Kastamonu Eğitim Dergisi, 12(1), 105- 116.
  • Dunham, P. H., & Osborne, A. (1991). Learning how to see: Students’ graphing difficulties. Focus on Learning Problems in Mathematics, 13(4), 35-49.
  • Eisenberg, T. (1991). Functions and associated learning difficulties. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 140-152). Dordrecht: Kluwer.
  • Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94–116.
  • Gaea, L., Orit, Z. & Kay. S. (1990). Functions, graphs and graphing: tasks, learning, and teaching. Review of Educational Research. 60(1), 1-64.
  • Hauge, S. K. (1993). Functions and relations: some applications from database management for the teaching of classroom mathematics. (ERIC Document Reproduction Service No. ED 365 519).
  • Herscovics, N. (1989). Cognitive obstacles encountered in the learning of algebra. In Wagner, S. ve Carolyn, K. (Eds.), Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics.
  • Iaderosa, R., Malara, N.A.: 1999, Analisi e valutazione delle difficoltà in un percorso di apprendimento nella scuola media finalizzato alla conquista del concetto di funzione nei suoi vari aspetti, to appear in Atti del 3 Internuclei Scuola dell'obbligo, (Vico Equense, Napoli, march 1999).
  • Geuther G. K. & Ferrini-Mundy, J. (1990). Functions and their representations. Mathematics Teacher, 83(3), 209-216.
  • MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation. Educational Studies in Mathematics, 33, 1-19.
  • Monk, S., Nemirovsky, R. (1994). The case of Dan: Student construction of a functional situation through visual attributes. CBMS Issues in Mathematics Education: Research in Collegiate Mathematics Education, 4, 139–168.
  • Moschkovich, J.N. (2004). Appropriating mathematical practise: a case study of learning to use and explore functions through interaction with a tutor. Educational Studies in Mathematics, 55, 49-80.
  • Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and practice in undergraduate mathematics (pp. 27-42). Washington, DC: Mathematical Association of America.
  • Sierpinska, A. (1992). On understanding the notion of function. (Ed. E. Dubinsky, G. Harel). The Concept of Function: Aspects of Epistemology and Pedagogy, Mathematical Association of America (M.A.A.) Notes, 25, (pp. 25–58).
  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate mathematics curriculum. (ed. E. Dubinsky, A. H. Schoenfeld ve J. J. Kaput), Research in Collegiate Mathematics Education, 1 (Issues in Mathematics Education. 4, 21- 44). Providence, RI: American Mathematical Society.
  • Türkeli Şandır, Y. (2006). Fonksiyon kavramı hakkında öğretmen adaylarınıngörüşleri üzerine bir fenomenografik çalışma. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ural, A. (2006). Fonksiyon öğreniminde kavramsal zorluklar. Ege Eğitim Dergisi, 7(2), 75–94.
  • Vinner, S. ve Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356-366.

Ninth Graders’ Notational Errors in Function Concept and Some Misconceptions

Yıl 2014, Cilt: 15 Sayı: 1, 53 - 63, 01.01.2014

Öz

This study is a qualitative research intented for ninth graders’ understanding of the symbol “y=f x ”. A total of 40 students participated in the research. Descriptive analysis was used in analyzing the data. In order to determine the students’ understandings of the symbolic representation of the function concept, the students were asked to write “m is a function of n” as symbolic, to give an example and to specify whether such a function maps m to n or n to m”. In the second question, by giving the functions p=f s =s+1 and k=g s =2s, the students were asked to write p as a function of k. As result, it was determined that most of the students failed in understanding the notations and expressions in the concept of function, making connection the functional relationships between and also that they had various misunderstandings

Kaynakça

  • Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247- 285.
  • Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A.F. Coxford & A. P. Schulte (Eds.), The ideas of algebra, K-12, 1988 Yearbook, (pp. 20-32), Reston, Va.: NCTM.
  • Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education III, CBMS Issues in Mathematics Education, 7, 114–163.
  • Dikici, R., & İşleyen, T. (2003). Bağıntı ve fonksiyon konusundaki öğrenme güçlüklerinin bazı değişkenler açısından incelenmesi. Kastamonu Eğitim Dergisi, 12(1), 105- 116.
  • Dunham, P. H., & Osborne, A. (1991). Learning how to see: Students’ graphing difficulties. Focus on Learning Problems in Mathematics, 13(4), 35-49.
  • Eisenberg, T. (1991). Functions and associated learning difficulties. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 140-152). Dordrecht: Kluwer.
  • Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94–116.
  • Gaea, L., Orit, Z. & Kay. S. (1990). Functions, graphs and graphing: tasks, learning, and teaching. Review of Educational Research. 60(1), 1-64.
  • Hauge, S. K. (1993). Functions and relations: some applications from database management for the teaching of classroom mathematics. (ERIC Document Reproduction Service No. ED 365 519).
  • Herscovics, N. (1989). Cognitive obstacles encountered in the learning of algebra. In Wagner, S. ve Carolyn, K. (Eds.), Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics.
  • Iaderosa, R., Malara, N.A.: 1999, Analisi e valutazione delle difficoltà in un percorso di apprendimento nella scuola media finalizzato alla conquista del concetto di funzione nei suoi vari aspetti, to appear in Atti del 3 Internuclei Scuola dell'obbligo, (Vico Equense, Napoli, march 1999).
  • Geuther G. K. & Ferrini-Mundy, J. (1990). Functions and their representations. Mathematics Teacher, 83(3), 209-216.
  • MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation. Educational Studies in Mathematics, 33, 1-19.
  • Monk, S., Nemirovsky, R. (1994). The case of Dan: Student construction of a functional situation through visual attributes. CBMS Issues in Mathematics Education: Research in Collegiate Mathematics Education, 4, 139–168.
  • Moschkovich, J.N. (2004). Appropriating mathematical practise: a case study of learning to use and explore functions through interaction with a tutor. Educational Studies in Mathematics, 55, 49-80.
  • Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and practice in undergraduate mathematics (pp. 27-42). Washington, DC: Mathematical Association of America.
  • Sierpinska, A. (1992). On understanding the notion of function. (Ed. E. Dubinsky, G. Harel). The Concept of Function: Aspects of Epistemology and Pedagogy, Mathematical Association of America (M.A.A.) Notes, 25, (pp. 25–58).
  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate mathematics curriculum. (ed. E. Dubinsky, A. H. Schoenfeld ve J. J. Kaput), Research in Collegiate Mathematics Education, 1 (Issues in Mathematics Education. 4, 21- 44). Providence, RI: American Mathematical Society.
  • Türkeli Şandır, Y. (2006). Fonksiyon kavramı hakkında öğretmen adaylarınıngörüşleri üzerine bir fenomenografik çalışma. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ural, A. (2006). Fonksiyon öğreniminde kavramsal zorluklar. Ege Eğitim Dergisi, 7(2), 75–94.
  • Vinner, S. ve Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356-366.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Alattin Ural Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 15 Sayı: 1

Kaynak Göster

APA Ural, A. (2014). 9. SINIF ÖĞRENCİLERİNİN FONKSİYON KAVRAMINDA NOTASYONEL HATALARI VE BAZI KAVRAM YANILGILARI. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 15(1), 53-63.

2562219122   19121   19116   19117     19118       19119       19120     19124