Araştırma Makalesi
BibTex RIS Kaynak Göster

Aronia Melanocarpa (Michx.) Meyvesindeki Fenolik, Flavonoid, Toplam Antioksidan Kapasitesi, Vitamin ve Glutatyon İçeriğinin Araştırılması

Yıl 2025, Cilt: 15 Sayı: 3, 1240 - 1251, 15.09.2025
https://doi.org/10.31466/kfbd.1659652

Öz

Aronya meyvesindeki yağda ve suda gözünen vitaminler, glutatyon miktarları yüksek performanslı sıvı kromatografisi (HPLC) ile tayin edilmiştir. Toplam fenolik ve flavonoid bileşik miktarları ve toplam antioksidan kapasitesi spektrofotometre ile belirlenmiştir. Meyvedeki vitamin A, E, β-karoten ve likopen miktarları sırasıyla 12.44±0.40, 19.51±0.51, 51.64±1.41 ve 5.85±0.17 µg/g olarak bulundu. Aronya meyvesindeki suda çözünen vitaminlerden askorbik asit, tiamin, riboflavin, nikotinik asit, pantotenik asit, pridoksin, folik asit ve siyanokobalamin miktarları sırasıyla 412.92±7.29, 4.27±0.14, 16.43±0.48, 34.13±1.01, 36.37±0.59, 3.43±0.12, 14.0±0.55, 5.33±0.14 µg/g, iken redükte ve okside glutatyon (GSH, GSSG) miktarları ise 706.32±11.25, 133.67±4.79 µg/g olarak belirlendi. Meyvelerdeki toplam fenolik madde miktarı 81.28±1.86 µg Gallik Asit/g, flavonoid madde miktarı ise 65.55±1.45 µg Kuersettin/g olarak belirlenmiştir. Aronya meyvesindeki DPPH yöntemine göre belirlenen IC50 değeri 23.17±0.78 µg/mL, TEAK yöntemine göre hesaplanan antioksidan kapasite değeri ise 272.85±6.31 µmol Troloks/g olarak bulunmuştur. Olgun aronya meyvesindeki vitaminler, glutatyon, toplam fenolik ve flavonoid madde miktarları ile toplam antioksidan kapasite bakımından uygun dozda tüketildiğinde sağlık için yararlı olduğu söylenebilir.

Kaynakça

  • Ali, H. M., Karataş, F., Özer, D., & Saydam, S. (2024a). Effect of Preservation Methods on Fat-Soluble Vitamins and Stress Biomarkers in Rhus coriaria L. (Sumac) of Different Regions. KSU, Journal of Agriculture and Nature, 27(1), 221-230. doi:10.18016/ksutarimdoga.vi.1436492
  • Ali, H. M., Karataş, F., Özer, D., & Saydam, S. (2024b). Element and Water Soluble Vitamins Profle of Rhus coriaria L. (Sumac) Grown in Diferent Regions. Biological Trace Element Research, 202, 3293–3302. https://doi.org/10.1007/s12011-023-03890-y
  • Andrès, E., Lorenzo-Villalba, N., Terrade, J.E., & Méndez-Bailo, M. (2024). Fat-Soluble Vitamins A, D, E, and K: Review of the Literature and Points of Interest for the Clinician. Journal of Clinical Medicine, 13(13), 1-13. doi: 10.3390/jcm13133641.
  • Asensi-Fabado, M. A., & Munne-Bosch, S. (2010). Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15(10), 582-592. doi.org/10.1016/j.tplants.2010.07.003
  • Aytuna Çerçi, N., Külahcı, M. B., Aydın, B., Beyzi, E., Arslan, A., & Demir, S. (2024). Aronia melanocarpa (Michx.) Elliott Meyve ve Yaprak Özütlerinin Biyolojik Aktivitelerinin Belirlenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 5(1), 31-38. e-ISSN: 2757-5543
  • Boyacı, H., Çöteli, E., & Karataş, F. (2016). Gilaburu (Viburnum opulus L.) Meyvesindeki A, E Vitamini, BetaKaroten, Likopen, Redükte ve Okside Glutatyon Miktarlarının Araştırılması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 9, 111-117. doi: 10.18185/eufbed.59250
  • Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules. 16(1), 251–280. ISSN 1420-3049
  • Cerit, İ., Demirer, A., Bülbül, E., Yaman, M., Güngör, Ş. N., & Demirkol, O. (2020). Tiyoller ve Gıda Sektöründe Kullanımları. Turkish Journal of Agriculture - Food Science and Technology, 8(5), 1027-1038. doi: 10.24925/turjaf.v8i5.1027-1038.2993
  • Çakmak, M., Bakar, B., Özer, D., Geckil, H., Karatas, F., & Saydam, S. (2021). Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. Journal of Food Measurement and Characterization. 15, 983–993. doi: 10.1007/s11694-020-00692-x
  • Çakmak, M., Bakar, B., Özer, D., Karataş, F., & Saydam, S. (2023). Amino Acid Content and Effect of Different Preservation Methods on Some Biochemical Properties in Black Myrtus communis L. Fruits”, Journal of Agricultural Sciences (Tarim Bilimleri Dergisi). 29(2), 507-518. doi: 10.15832/ankutbd.941384
  • Denev, P., Kratchanova, M., Petrova, I., Klisurova, D., Georgiev, Y., Ognyanov, M., & Yanakieva, I. (2018). Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. Journal of Chemistry, 2018, 1-11. https://doi.org/10.1155/2018/9574587
  • Fraga, C. G., Oteiza, P. I., & Galleano, M. (2014). In vitro measurements and interpretation of total antioxidant capacity. Biochimica et Biophysica Acta., 1840, 931–934. doi: 10.1016/j.bbagen.2013.06.030
  • Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A., & Martinez J. A. (2009). Flavonoids as antiinflammatory agents: Implications in cancer and cardiovascular disease. Inflammation Research, 58, 537–552. doi: 10.1007/s00011-009-0037-3
  • Gaucher, C., Boudier, A., Bonetti, J., Clarot, I., Leroy, P., & Parent, M. (2018). Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants. 7(62), 1-21. doi:10.3390/antiox7050062
  • Georgiou-Siafis, S. K., & Tsiftsoglou, A. S. (2023). The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants. 12, 1953, 1-30. doi: 10.3390/antiox12111953
  • Gironés-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C., & Moreno, D. A. (2014). Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods, 7, 599–608. https://doi.org/10.1016/j.jff.2013.12.025.
  • Grune, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., Thurnham, D., Yin, S., & Biesalski, H. K. (2010). β-Carotene is an important vitamin A source for humans. American Society for Nutrition. 27, 2268-2285. doi: 10.3945/jn.109.119024
  • Hanna, M., Jaqua, E., Nguyen, V., & Clay, J. (2022). B Vitamins: functions and uses in medicine. The Permanente Journal, 26(2), 89-97. doi: 10.7812/TPP/21.204
  • İşbilir, G., Gökmen, A. Ş. C. I., İsmail, A. L., & Özdemir, E. (2023). Bitkisel yağların tıbbi ve aromatik kullanımı. International Journal of Sustainability, 1(1), 93-111. doi: https://doi.org/10.5281/zenodo.7779095
  • Jurendi´c, T., & Ўcetar, M. (2021). Aronia melanocarpa products and by-products for health and nutrition: A Review. Antioxidants. 10, 1052, 1-15. https://doi.org/10.3390/antiox10071052
  • Jurikova, T., Mlcek, J., Skrovankova, S., Sumczynski, D., Sochor, J., Hlavacova, I., Snopek, l., & Orsavova, J. (2017). Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules, 22(6), 1–23. https://doi.org/10.3390/molecules22060944
  • Karadag, A. (2019). Türkiye’deki bazı tıbbi ve aromatik bitkilerin antioksidan potansiyelleri ve fenolik kompozisyonları. Avrupa Bilim ve Teknoloji Dergisi. 16, 631-637. doi: 10.31590/ejosat.592711
  • Karakaya, S. (2004). Bioavailability of phenolic compounds. Critical Reviews in Food Science and Nutrition, 44(6), 453–464. doi: 10.1080/10408690490886683
  • Kennedy, D. O. (2016). B Vitamins and the brain: Mechanisms, dose and efficacy—A Review. Nutrients. 8, 68, 1-29. doi: 10.3390/nu8020068
  • Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity, 2021, Article ID 2713511, 1-10. doi: 10.1155/2021/2713511.
  • Kulling, S. E., & Rawel, H. (2008). Chokeberry (Aronia melanocarpa)– A Review on the characteristic components and potential health effects. Planta Medica., 74(13), 1625–1634. https://doi.org/10.1055/s-0028-1088306
  • Lancrajan, I. (2012). Aronia melanocarpa, a potential therapeutic agent. Life Sciences Series. 22(3), 389–394. www.studiauniversitatis.ro
  • Lupascu, N., & Sîrbu, R. (2020). Studies concerning the stability if antioxidant compounds in aronia melanocarpa fruits. European Journal of Medicine and Natural Sciences, 3(2), 78-83. doi: 10.26417/149mik44b
  • MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: a review, Journal of the Science of Food and Agriculture, 86, 2046–2056. https://doi.org/10.1002/jsfa.2603
  • Najda, A., & Łabuda, H. (2013). Content of phenolic compounds and antioxidant properties of fruits of selected orchard shrub species. Modern Phytomorphology, 3, 105–109. doi: 10.5281/zenodo.161997
  • Oliveira, P. V., & Laurindo, F. R. (2018). Implications of plasma thiol redox in disease. Clinical Science, 132, 1257–1280. doi: 10.1042/CS20180157.
  • Ono, M., Takeshima, M., & Nakano, S. (2015). Mechanism of the anticancer effect of lycopene (Tetraterpenoids). Enzymes, 37, 139–166. doi: 10.1016/bs.enz.2015.06.00
  • Oszmiański, J., & Lchowicz, S. (2016). Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, 21(8), 1098. https://doi.org/10.3390/molecules21081098
  • Özdemir, K., & Eroğlu Özkan, E. (2020). Aronia Sp. Meyvelerinin kimyasal bileşimi ve biyolojik aktiviteleri. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 44(3), 557-570. doi: 10.33483/jfpau.777371
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. J. Nutr. Sci., 5(47), 1-15. doi: 10.1017/jns.2016.41
  • Pizzorno, J. E., & Katzinger J. J. (2012). Glutathione: Physiological and clinical relevance. Journal of Restorative Medicine, 1, 1-24. doi: 10.14200/jrm.2012.1.1002
  • Prenesti, E., Berto, S., Gosmaro, F., Bagnati, M., & Bellomo, G. (2021). Biomolecules responsible for the total antioxidant capacity (TAC) of human plasma in healthy and cardiopathic individuals: A Chemical speciation model. Antioxidants. 10, 656. 1-14. https://doi.org/10.3390/antiox10050656
  • Rahman, M., Rahaman, S., Islam, R., Rahman, F., Mithi, F.M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, S., Ahmed, M., Das, R., Emran, T. B., & Uddin, S. (2022). Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 27(1), 1-36. doi: 10.3390/molecules27010233
  • Sghaiera, M. B., Skandrani, I., Nasra, N., Francac, M. G. D., Chekir-Ghediraa, L., & Ghediraa, K. (2011). Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure– activity relationship study. Environmental Toxicology and Pharmacology, 32, 336–348. doi: 10.1016/j.etap.2011.07.003.
  • Shahin, L., Phaal, S. S., Vaidya, B. N., Brown, J. E., & Joshee, N. (2019). Aronia (chokeberry): an underutilized, highly nutraceutical plant. Journal of Medicinally Active Plants. 8(4), 46-63. ISNN 2159-7200
  • Sidor, A., & Gramza-Michałowska, A. (2019). Black chokeberry aronia melanocarpa L.—A Qualitative composition, phenolic profile and antioxidant potential. Molecules. 24, 1-57. https://doi.org/10.3390/molecules24203710
  • Szopa, A., Kokotkiewicz, A., Kubica, Pi, Banaszczak, Pi, Wojtanowska-Kro´sniak, A., Krosniak, M., Marzec-Wróblewska, U., Badura, A., Zagrodzki, P., & Bucinski, A. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657. doi: 10.1007/s00217-017-2872-8
  • Tanaka, T., & Tanaka, A. (2001). Chemical components and characteristics of black chokeberry. Journal of the Japanese Society for Food Science and Technology. 8, 606-610. doi: 10.3136/nskkk.48.606
  • Tolić, M. T., Krbavčić, I. P., Vujević, P., Milinović, B., Jurčević, I. L., & Vahčić, N. (2017). Effects of Weather Conditions on Phenolic Content and Antioxidant Capacity in Juice of Chokeberries (Aronia melanocarpa L.). Polish Journal of Food and Nutrition Sciences, 67(1), 67–74. doi: 10.1515/pjfns-2016-0009
  • Zhang,Y., Zhao, Y., Liu, X., Chen, X., Ding, C., Dong, L., Zhang, J., Sun, S., Ding, Q., Khatoom, S., Cheng, Z., Liu, W., Shend, L., & Xiao, F. (2021). Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: an overview. Journal of Future Foods. 1-2, 168–178. https://doi.org/10.1016/j.jfutfo.2022.01.006

Investigation of Phenolic, Flavonoid, Total Antioxidant Capacity, Vitamins, and Glutathione Contents of Aronia Melanocarpa (Michx.) Fruits

Yıl 2025, Cilt: 15 Sayı: 3, 1240 - 1251, 15.09.2025
https://doi.org/10.31466/kfbd.1659652

Öz

The nutritional profile and antioxidant capacity of ripe aronia (Aronia melanocarpa) fruit were comprehensively analyzed using High-Performance Liquid Chromatography (HPLC) and Ultraviolet-visible (UV-vis) spectrophotometry. The content of fat-soluble vitamins was quantified as follows: vitamin A – 12.44 ± 0.69 µg/g, vitamin E – 19.51 ± 0.88 µg/g, β-carotene – 51.64 ± 2.44 µg/g, and lycopene – 5.85 ± 0.30 µg/g. Water-soluble vitamins were also abundant, with ascorbic acid (vitamin C) being the most prevalent at 412.92 ± 12.61 µg/g, followed by riboflavin (16.43 ± 0.83 µg/g), pantothenic acid (36.37 ± 1.02 µg/g), and others including thiamine, nicotinic acid, pyridoxine, folic acid, and cyanocobalamin. Glutathione levels, essential for redox balance, were measured as 706.32 ± 19.46 µg/g for reduced glutathione (GSH) and 133.67 ± 8.28 µg/g for oxidized glutathione (GSSG). The fruit also exhibited high polyphenol and flavonoid contents, with total phenolics at 81.28 ± 3.21 µg gallic acid equivalents per gram and flavonoids at 65.55 ± 2.50 µg quercetin equivalents per gram. Antioxidant capacity was evaluated using two methods: the DPPH assay yielded an IC₅₀ value of 23.17 ± 1.35 µg/mL, indicating strong radical scavenging activity, while the TEAC method demonstrated a total antioxidant capacity of 272.85 ± 10.91 µmol Trolox equivalents per gram. Ripe aronia fruit is rich in essential vitamins, glutathione, phenolic and flavonoid compounds, and possesses strong antioxidant capacity. These findings support its potential health benefits when consumed in appropriate amounts.

Etik Beyan

Gerekli Değil

Kaynakça

  • Ali, H. M., Karataş, F., Özer, D., & Saydam, S. (2024a). Effect of Preservation Methods on Fat-Soluble Vitamins and Stress Biomarkers in Rhus coriaria L. (Sumac) of Different Regions. KSU, Journal of Agriculture and Nature, 27(1), 221-230. doi:10.18016/ksutarimdoga.vi.1436492
  • Ali, H. M., Karataş, F., Özer, D., & Saydam, S. (2024b). Element and Water Soluble Vitamins Profle of Rhus coriaria L. (Sumac) Grown in Diferent Regions. Biological Trace Element Research, 202, 3293–3302. https://doi.org/10.1007/s12011-023-03890-y
  • Andrès, E., Lorenzo-Villalba, N., Terrade, J.E., & Méndez-Bailo, M. (2024). Fat-Soluble Vitamins A, D, E, and K: Review of the Literature and Points of Interest for the Clinician. Journal of Clinical Medicine, 13(13), 1-13. doi: 10.3390/jcm13133641.
  • Asensi-Fabado, M. A., & Munne-Bosch, S. (2010). Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends in Plant Science, 15(10), 582-592. doi.org/10.1016/j.tplants.2010.07.003
  • Aytuna Çerçi, N., Külahcı, M. B., Aydın, B., Beyzi, E., Arslan, A., & Demir, S. (2024). Aronia melanocarpa (Michx.) Elliott Meyve ve Yaprak Özütlerinin Biyolojik Aktivitelerinin Belirlenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 5(1), 31-38. e-ISSN: 2757-5543
  • Boyacı, H., Çöteli, E., & Karataş, F. (2016). Gilaburu (Viburnum opulus L.) Meyvesindeki A, E Vitamini, BetaKaroten, Likopen, Redükte ve Okside Glutatyon Miktarlarının Araştırılması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 9, 111-117. doi: 10.18185/eufbed.59250
  • Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules. 16(1), 251–280. ISSN 1420-3049
  • Cerit, İ., Demirer, A., Bülbül, E., Yaman, M., Güngör, Ş. N., & Demirkol, O. (2020). Tiyoller ve Gıda Sektöründe Kullanımları. Turkish Journal of Agriculture - Food Science and Technology, 8(5), 1027-1038. doi: 10.24925/turjaf.v8i5.1027-1038.2993
  • Çakmak, M., Bakar, B., Özer, D., Geckil, H., Karatas, F., & Saydam, S. (2021). Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. Journal of Food Measurement and Characterization. 15, 983–993. doi: 10.1007/s11694-020-00692-x
  • Çakmak, M., Bakar, B., Özer, D., Karataş, F., & Saydam, S. (2023). Amino Acid Content and Effect of Different Preservation Methods on Some Biochemical Properties in Black Myrtus communis L. Fruits”, Journal of Agricultural Sciences (Tarim Bilimleri Dergisi). 29(2), 507-518. doi: 10.15832/ankutbd.941384
  • Denev, P., Kratchanova, M., Petrova, I., Klisurova, D., Georgiev, Y., Ognyanov, M., & Yanakieva, I. (2018). Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. Journal of Chemistry, 2018, 1-11. https://doi.org/10.1155/2018/9574587
  • Fraga, C. G., Oteiza, P. I., & Galleano, M. (2014). In vitro measurements and interpretation of total antioxidant capacity. Biochimica et Biophysica Acta., 1840, 931–934. doi: 10.1016/j.bbagen.2013.06.030
  • Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A., & Martinez J. A. (2009). Flavonoids as antiinflammatory agents: Implications in cancer and cardiovascular disease. Inflammation Research, 58, 537–552. doi: 10.1007/s00011-009-0037-3
  • Gaucher, C., Boudier, A., Bonetti, J., Clarot, I., Leroy, P., & Parent, M. (2018). Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants. 7(62), 1-21. doi:10.3390/antiox7050062
  • Georgiou-Siafis, S. K., & Tsiftsoglou, A. S. (2023). The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants. 12, 1953, 1-30. doi: 10.3390/antiox12111953
  • Gironés-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C., & Moreno, D. A. (2014). Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods, 7, 599–608. https://doi.org/10.1016/j.jff.2013.12.025.
  • Grune, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., Thurnham, D., Yin, S., & Biesalski, H. K. (2010). β-Carotene is an important vitamin A source for humans. American Society for Nutrition. 27, 2268-2285. doi: 10.3945/jn.109.119024
  • Hanna, M., Jaqua, E., Nguyen, V., & Clay, J. (2022). B Vitamins: functions and uses in medicine. The Permanente Journal, 26(2), 89-97. doi: 10.7812/TPP/21.204
  • İşbilir, G., Gökmen, A. Ş. C. I., İsmail, A. L., & Özdemir, E. (2023). Bitkisel yağların tıbbi ve aromatik kullanımı. International Journal of Sustainability, 1(1), 93-111. doi: https://doi.org/10.5281/zenodo.7779095
  • Jurendi´c, T., & Ўcetar, M. (2021). Aronia melanocarpa products and by-products for health and nutrition: A Review. Antioxidants. 10, 1052, 1-15. https://doi.org/10.3390/antiox10071052
  • Jurikova, T., Mlcek, J., Skrovankova, S., Sumczynski, D., Sochor, J., Hlavacova, I., Snopek, l., & Orsavova, J. (2017). Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules, 22(6), 1–23. https://doi.org/10.3390/molecules22060944
  • Karadag, A. (2019). Türkiye’deki bazı tıbbi ve aromatik bitkilerin antioksidan potansiyelleri ve fenolik kompozisyonları. Avrupa Bilim ve Teknoloji Dergisi. 16, 631-637. doi: 10.31590/ejosat.592711
  • Karakaya, S. (2004). Bioavailability of phenolic compounds. Critical Reviews in Food Science and Nutrition, 44(6), 453–464. doi: 10.1080/10408690490886683
  • Kennedy, D. O. (2016). B Vitamins and the brain: Mechanisms, dose and efficacy—A Review. Nutrients. 8, 68, 1-29. doi: 10.3390/nu8020068
  • Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity, 2021, Article ID 2713511, 1-10. doi: 10.1155/2021/2713511.
  • Kulling, S. E., & Rawel, H. (2008). Chokeberry (Aronia melanocarpa)– A Review on the characteristic components and potential health effects. Planta Medica., 74(13), 1625–1634. https://doi.org/10.1055/s-0028-1088306
  • Lancrajan, I. (2012). Aronia melanocarpa, a potential therapeutic agent. Life Sciences Series. 22(3), 389–394. www.studiauniversitatis.ro
  • Lupascu, N., & Sîrbu, R. (2020). Studies concerning the stability if antioxidant compounds in aronia melanocarpa fruits. European Journal of Medicine and Natural Sciences, 3(2), 78-83. doi: 10.26417/149mik44b
  • MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: a review, Journal of the Science of Food and Agriculture, 86, 2046–2056. https://doi.org/10.1002/jsfa.2603
  • Najda, A., & Łabuda, H. (2013). Content of phenolic compounds and antioxidant properties of fruits of selected orchard shrub species. Modern Phytomorphology, 3, 105–109. doi: 10.5281/zenodo.161997
  • Oliveira, P. V., & Laurindo, F. R. (2018). Implications of plasma thiol redox in disease. Clinical Science, 132, 1257–1280. doi: 10.1042/CS20180157.
  • Ono, M., Takeshima, M., & Nakano, S. (2015). Mechanism of the anticancer effect of lycopene (Tetraterpenoids). Enzymes, 37, 139–166. doi: 10.1016/bs.enz.2015.06.00
  • Oszmiański, J., & Lchowicz, S. (2016). Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, 21(8), 1098. https://doi.org/10.3390/molecules21081098
  • Özdemir, K., & Eroğlu Özkan, E. (2020). Aronia Sp. Meyvelerinin kimyasal bileşimi ve biyolojik aktiviteleri. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 44(3), 557-570. doi: 10.33483/jfpau.777371
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. J. Nutr. Sci., 5(47), 1-15. doi: 10.1017/jns.2016.41
  • Pizzorno, J. E., & Katzinger J. J. (2012). Glutathione: Physiological and clinical relevance. Journal of Restorative Medicine, 1, 1-24. doi: 10.14200/jrm.2012.1.1002
  • Prenesti, E., Berto, S., Gosmaro, F., Bagnati, M., & Bellomo, G. (2021). Biomolecules responsible for the total antioxidant capacity (TAC) of human plasma in healthy and cardiopathic individuals: A Chemical speciation model. Antioxidants. 10, 656. 1-14. https://doi.org/10.3390/antiox10050656
  • Rahman, M., Rahaman, S., Islam, R., Rahman, F., Mithi, F.M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, S., Ahmed, M., Das, R., Emran, T. B., & Uddin, S. (2022). Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 27(1), 1-36. doi: 10.3390/molecules27010233
  • Sghaiera, M. B., Skandrani, I., Nasra, N., Francac, M. G. D., Chekir-Ghediraa, L., & Ghediraa, K. (2011). Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure– activity relationship study. Environmental Toxicology and Pharmacology, 32, 336–348. doi: 10.1016/j.etap.2011.07.003.
  • Shahin, L., Phaal, S. S., Vaidya, B. N., Brown, J. E., & Joshee, N. (2019). Aronia (chokeberry): an underutilized, highly nutraceutical plant. Journal of Medicinally Active Plants. 8(4), 46-63. ISNN 2159-7200
  • Sidor, A., & Gramza-Michałowska, A. (2019). Black chokeberry aronia melanocarpa L.—A Qualitative composition, phenolic profile and antioxidant potential. Molecules. 24, 1-57. https://doi.org/10.3390/molecules24203710
  • Szopa, A., Kokotkiewicz, A., Kubica, Pi, Banaszczak, Pi, Wojtanowska-Kro´sniak, A., Krosniak, M., Marzec-Wróblewska, U., Badura, A., Zagrodzki, P., & Bucinski, A. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657. doi: 10.1007/s00217-017-2872-8
  • Tanaka, T., & Tanaka, A. (2001). Chemical components and characteristics of black chokeberry. Journal of the Japanese Society for Food Science and Technology. 8, 606-610. doi: 10.3136/nskkk.48.606
  • Tolić, M. T., Krbavčić, I. P., Vujević, P., Milinović, B., Jurčević, I. L., & Vahčić, N. (2017). Effects of Weather Conditions on Phenolic Content and Antioxidant Capacity in Juice of Chokeberries (Aronia melanocarpa L.). Polish Journal of Food and Nutrition Sciences, 67(1), 67–74. doi: 10.1515/pjfns-2016-0009
  • Zhang,Y., Zhao, Y., Liu, X., Chen, X., Ding, C., Dong, L., Zhang, J., Sun, S., Ding, Q., Khatoom, S., Cheng, Z., Liu, W., Shend, L., & Xiao, F. (2021). Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: an overview. Journal of Future Foods. 1-2, 168–178. https://doi.org/10.1016/j.jfutfo.2022.01.006
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Refik Servi 0000-0001-5443-4638

Fikret Karataş 0000-0002-0884-027X

Dursun Özer 0000-0002-7225-8903

Sinan Saydam 0000-0003-1531-5454

Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 17 Mart 2025
Kabul Tarihi 29 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Servi, R., Karataş, F., Özer, D., Saydam, S. (2025). Investigation of Phenolic, Flavonoid, Total Antioxidant Capacity, Vitamins, and Glutathione Contents of Aronia Melanocarpa (Michx.) Fruits. Karadeniz Fen Bilimleri Dergisi, 15(3), 1240-1251. https://doi.org/10.31466/kfbd.1659652