Araştırma Makalesi
BibTex RIS Kaynak Göster

Eğitim fakültesi öğretim elemanlarının üretken yapay zekâya yönelik farkındalıklarının belirlenmesi ve öğretmen yetiştirmede kullanımına yönelik öneriler

Yıl 2025, Sayı: 74, 618 - 647, 30.04.2025
https://doi.org/10.21764/maeuefd.1627851

Öz

Özet: Bu araştırma, üretken yapay zekâ teknolojilerinin eğitimde kullanımıyla ilgili olarak Eğitim Fakültesi öğretim elemanlarının görüşlerini ve farkındalıklarını belirleyerek öğretmen yetiştirmede kullanımına yönelik öneriler geliştirmeyi amaçlamaktadır. Araştırma, katılımcıların yapay zekâ kullanımına dair farkındalıklarını ve değerlendirmelerini dört ana boyutta incelemeyi hedeflemiştir: güçlü yönler, zayıf yönler, fırsatlar ve tehditler. Araştırma, nitel bir yaklaşım benimseyerek, eğitimde yapay zekâ kullanımına dair katılımcı görüşlerinin derinlemesine incelendiği SWOT analizi yöntemini kullanmıştır. Katılımcılar, Eğitim Fakültesi öğretim elemanlarından oluşmaktadır. Yarı yapılandırılmış görüşmeler yoluyla toplanan veriler, tematik analizle analiz edilmiştir. Araştırma sonuçları katılımcıların eğitimde yapay zekâ kullanımının pedagojik olarak büyük potansiyel sunduğu, kişiselleştirilmiş öğrenme ve kapsayıcı eğitim fırsatları sağladığı ancak etik ve güvenlik sorunlarına duyarlılığın artırılması gerektiği görüşüne sahip olduklarını göstermektedir. Öne çıkan en önemli öneri, yapay zekânın etik ve güvenli bir şekilde kullanılmasını sağlamak için kapsamlı etik ve güvenlik kılavuzlarının geliştirilmesidir. Eğitimdeki eşitsizliklerin giderilmesi için altyapı yatırımları yapılması ve eğitimciler için profesyonel gelişim programlarının düzenlenmesi, yapay zekâ teknolojisinin daha etkili bir şekilde kullanılması için kritik adımlardır. Eğitimde yapay zekâ kullanımının yaygınlaştırılması, teknolojinin pedagojik etkinliğinin artırılması ve dijital uçurumun engellenmesi açısından bu adımlar, eğitim sistemini daha sürdürülebilir ve kapsayıcı bir hale getirecektir.

Kaynakça

  • Aguero, FM, Pastör, KR ve Miranda, JCC (2024). Hispanoamerican University of Costa Rica Öğrencilerinin Akademik Deneyiminde Öğretmen Gelişimi ve Eğitim Programının Dönüştürücü Rolü. Ciencia Latina Revista Científica Multidisciplinar, 8 (2), 785-801.
  • Akıncı, G. Y., Akıncı, M., & Yılmaz, Ö. (2022). Teknolojik Gelişme ve Fonksiyonel Gelir Dağılımı İlişkisi: Türkiye Ekonomisi Üzerine Kantil Regresyon Analizi. Çalışma ve Toplum, 3(74), 1797-1832.
  • Al-Zyoud, H. M. M. (2020). The role of artificial intelligence in teacher professional development. Universal Journal of Educational Research, 8(11B), 6263-6272.
  • Aldeman, N. L. S., de Sá Urtiga Aita, K. M., Machado, V. P., da Mata Sousa, L. C. D., Coelho, A. G. B., da Silva, A. S., ... & do Monte, S. J. H. (2021). Smartpathk: a platform for teaching glomerulopathies using machine learning. BMC Medical Education, 21(1), 248.
  • Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
  • Bond, M., Zawacki‐Richter, O., & Nichols, M. (2019). Revisiting five decades of educational technology research: A content and authorship analysis of the British Journal of Educational Technology. British Journal of Educational technology, 50(1), 12-63.
  • Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P, Sin W.C & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1), 4.
  • Brandão, A., Pedro, L., & Zagalo, N. (2024). Teacher professional development for a future with generative artificial intelligence–an integrative literature review. Digital Education Review, (45), 151-157.
  • Bulut, M. A., Davarcı, M., Bozdoğan, N. K., & Sarpkaya, Y. (2024). Yapay zekânın eğitim üzerindeki etkileri. Ulusal Eğitim Dergisi, 4(3), 976-986.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2009). Bilimsel Araştırma Yöntemleri. Pegem Akademi.
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
  • Chiu, T. K. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 1-17.
  • Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118.
  • Clarke, V., & Braun, V. (2017). Thematic analysis. The Journal of Positive Psychology, 12(3), 297-298.
  • Creswell, J. (2013). Qualitative research narrative structure. pdf. Qualitative Inquiry and Research Design: Choosing Among Five Approaches,, 220-230
  • Çarıkçı, K., Meral, H., Berkil, S., Çalışır, A., Önala, L., & Arslan, Ö. (2024). Nitel araştırmalarda tematik analiz. Socrates Journal of Interdisciplinary Social Studies, 10(37), 127-140.
  • Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205, 219.
  • Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10(1), 12. Earl, L. M. (2012). Assessment as learning: Using classroom assessment to maximize student learning. Corwin Press.
  • Elgohary, H. K. A., & Al-Dossary, H. K. (2022). The effectiveness of an educational environment based on artificial intelligence techniques using virtual classrooms on training development. International Journal of Instruction, 15(4), 1133-1150.
  • Ezquerra, A., Agen, F., Rodríguez-Arteche, I., & Ezquerra-Romano, I. (2022). Integrating Artificial Intelligence into Research on Emotions and Behaviors in Science Education. Eurasia Journal of Mathematics, Science and Technology Education, 18(4).
  • Fahimirad, M., & Kotamjani, S. S. (2018). A review on application of artificial intelligence in teaching and learning in educational contexts. International Journal of Learning and Development, 8(4), 106-118.
  • Fernández Herrero, J., Gómez Donoso, F., & Roig Vila, R. (2023). The first steps for adapting an artificial intelligence emotion expression recognition software for emotional management in the educational context. British Journal of Educational Technology, 54(6), 1939-1963.
  • Fitria, T. N. (2021). Artificial intelligence (AI) in education: Using AI tools for teaching and learning process. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 4, No. 1, pp. 134-147).
  • Fu, R., Huang, Y., & Singh, P. V. (2020). Artificial intelligence and algorithmic bias: Source, detection, mitigation, and implications. In Pushing the Boundaries: Frontiers in Impactful OR/OM Research (pp. 39-63). INFORMS.
  • Öksüz Gül, F. (2024). Eğitimde yapay zekâ: Eğitim Fakültesi akademisyenleri için fırsatlar ve riskler. Medeniyet Eğitim Araştırmaları Dergisi, 8(2), 71-97.
  • Holmes, W., & Littlejohn, A. (2024). Artificial intelligence for professional learning. In Handbook of Artificial Intelligence at Work (pp. 191-211). Edward Elgar Publishing.
  • Kara, Ö. G. A., Bingöl, Ö. G. İ., & Yıldırım, S. (2024). Eğitimde Yapay Zekâ Üzerine Yapılmış Çalışmaların Bibliyometrik Analizi. Dede Korkut Eğitim Araştırmaları Kongresi, 3-5 Ekim 2024. Bayburt.
  • Karan, B., & Angadi, G. R. (2023). Potential risks of artificial intelligence integration into school education: A systematic review. Bulletin of Science, Technology & Society, 43(3-4), 67-85.
  • Karatop, B. (2015). Yerli Otomotiv Yatırımında Odak Strateji Karar Modeli: Bulanık AHP Uygulaması, Doğu Kütüphanesi.
  • Kennedy, L., ve Macneela, P. (2013). Adolescent acculturation experiences: A meta-ethnography of qualitative research. International Journal of Intercultural Relations (40), 126-140. https://doi.org/10.1016/j.ijintrel.2013.11.003
  • Khan, I. A., & Paliwal, N. W. (2023). ChatGPT and digital inequality: A rising concern. Sch J App Med Sci, 9, 1646-7. İşler, B., & Kılıç, M. (2021). Eğitimde yapay zekâ kullanımı ve gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11.
  • Lampou, R. (2023). The integration of artificial intelligence in education: Opportunities and challenges. Review of Artificial Intelligence in Education, 4, e15-e15.
  • Lecompte, M. D., ve Goetz, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 31-60. https://doi.org/10.3102/00346543052001031
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.
  • Mah, D. K., & Groß, N. (2024). Artificial intelligence in higher education: exploring faculty use, self-efficacy, distinct profiles, and professional development needs. International Journal of Educational Technology in Higher Education, 21(1), 58.
  • Miles, M. B., & Huberman, A. M. (2019). Nitel veri analizi (3. baskı). (Çev. Ed.: S.Akbaba Altun & A. Ersoy). Pegem.
  • Mohammed, P. S., & ‘Nell’Watson, E. (2019). Towards inclusive education in the age of artificial intelligence: Perspectives, challenges, and opportunities. Artificial Intelligence and Inclusive Education: Speculative futures and emerging practices, 17-37.
  • Mutlu, T. (2023). Yapay Zekâ ve Girişimcilik. Yeni Dünyada Girişimcilik, Gökmen Durmuş, Mehmet Seyhan, Editör, Gazi Kitabevi, Ankara, ss.1-18, 2023
  • Ng, D. T. K., Su, J., Leung, J. K. L., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy education in secondary schools: a review. Interactive Learning Environments, 1-21.
  • Qadir, J. (2023). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. In 2023 IEEE Global Engineering Education Conference (EDUCON) (pp. 1-9). IEEE.
  • Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice. Sage publications.
  • Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
  • Poquet, O., & De Laat, M. (2021). Developing capabilities: Lifelong learning in the age of AI. British Journal of Educational Technology, 52(4), 1695-1708.
  • Pratama, M. P., Sampelolo, R., & Lura, H. (2023). Revolutionizing education: harnessing the power of artificial intelligence for personalized learning. Klasikal: Journal of education, language teaching and science, 5(2), 350-357.
  • Saputra, I., Astuti, M., Sayuti, M., & Kusumastuti, D. (2023). Integration of Artificial Intelligence in Education: Opportunities, Challenges, Threats and Obstacles. A Literature Review. The Indonesian Journal of Computer Science, 12(4).
  • Tan, X., Cheng, G., & Ling, M. H. (2024). Artificial Intelligence in Teaching and Teacher Professional Development: A Systematic Review. Computers and Education: Artificial Intelligence, 100355.
  • Terwiesch, C. (2023). Would chat GPT3 get a Wharton MBA? A prediction based on its performance in the operations management course. Mack Institute for Innovation Management at the Wharton School, University of Pennsylvania.
  • Thompson, A., Peteraf, M., Gamble, J., Strickland III, A. J., & Jain, A. K. (2016). Crafting & Executing Strategy, The Quest for Competitive Advantage: Concepts and Cases. (20th Ed.). McGraw-Hill Education.
  • Türnüklü, A. (2000). Eğitimbilim araştırmalarında etkin olarak kullanılabilecek nitel bir araştırma tekniği: Görüşme. Kuram ve Uygulamada Eğitim Yönetimi Dergisi, 24, 543-559.
  • UNESCO, (2024). AI competency framework for teachers. https://www.unesco.org/en/articles/ai-competency-framework-teachers.
  • Ulla, M. B., Perales, W. F., & Busbus, S. O. (2023). ‘To generate or stop generating response’: Exploring EFL teachers’ perspectives on ChatGPT in English language teaching in Thailand. Learning: Research and Practice, 9(2), 168-182.
  • Uğur, S., (2023). Teknolojik tekillik bağlamında açıköğretim sisteminin dijital dönüşüm süreci. İçinde S. Koçdar, A. Z. Özgür, K. Çekerol, İ. Kayabaş (Eds.). Açıköğretimle 40 Yıl (ss.669-692), Anadolu Yayınları.
  • Valentin, E. K. (2001). SWOT analysis from a resource-based view. Journal of marketing theory and practice, 9(2), 54-69.
  • Vistorte, A. O. R., Deroncele-Acosta, A., Ayala, J. L. M., Barrasa, A., López-Granero, C., & Martí-González, M. (2024). Integrating artificial intelligence to assess emotions in learning environments: a systematic literature review. Frontiers in Psychology, 15, 1387089.
  • Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long range planning, 15 (2), 54-66.
  • Willis, J., Adie, L., & Klenowski, V. (2013). Conceptualising teachers’ assessment literacies in an era of curriculum and assessment reform. The Australian Educational Researcher, 40, 241-256. https://doi.org/10.1007/s13384-013-0089-9.
  • Wiliam, D. (2011). What is assessment for learning?. Studies in Educational Evaluation, 37(1), 3-14. https://doi.org/10.1016/j.stueduc.2011.03.001.
  • Yıldırım, P., ve Şimşek, P. (2021). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Zanetti, M., Rendina, S., Piceci, L., & Cassese, F. P. (2020). Potential risks of artificial intelligence in education. Form@ re-Open Journal per la formazione in rete, 20(1), 368-378.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27.

Determination of faculty of education lecturers' awareness of generative artificial intelligence and suggestions for its use in teacher training

Yıl 2025, Sayı: 74, 618 - 647, 30.04.2025
https://doi.org/10.21764/maeuefd.1627851

Öz

Abstract: This research aims to determine the opinions and awareness of the faculty members of the Faculty of Education about the use of generative artificial intelligence technologies in education and to develop suggestions for their use in teacher training. The research aimed to examine the participants' awareness and evaluations of the use of artificial intelligence in four main dimensions: strengths, weaknesses, opportunities and threats. The study adopted a qualitative approach and used the SWOT analysis method in which the participants' views on the use of artificial intelligence in education were analysed in depth. The participants consisted of lecturers from the Faculty of Education. The data collected through semi-structured interviews were analysed by thematic analysis. The results of the research show that the participants have the view that the use of artificial intelligence in education offers great potential pedagogically, provides personalised learning and inclusive education opportunities, but sensitivity to ethical and security issues should be increased. The most important recommendation is the development of comprehensive ethical and safety guidelines to ensure the ethical and safe use of AI. Making infrastructure investments to eliminate inequalities in education and organising professional development programmes for educators are critical steps for more effective use of artificial intelligence technology. These steps will make the education system more sustainable and inclusive in terms of expanding the use of artificial intelligence in education, increasing the pedagogical effectiveness of technology and preventing the digital divide.

Kaynakça

  • Aguero, FM, Pastör, KR ve Miranda, JCC (2024). Hispanoamerican University of Costa Rica Öğrencilerinin Akademik Deneyiminde Öğretmen Gelişimi ve Eğitim Programının Dönüştürücü Rolü. Ciencia Latina Revista Científica Multidisciplinar, 8 (2), 785-801.
  • Akıncı, G. Y., Akıncı, M., & Yılmaz, Ö. (2022). Teknolojik Gelişme ve Fonksiyonel Gelir Dağılımı İlişkisi: Türkiye Ekonomisi Üzerine Kantil Regresyon Analizi. Çalışma ve Toplum, 3(74), 1797-1832.
  • Al-Zyoud, H. M. M. (2020). The role of artificial intelligence in teacher professional development. Universal Journal of Educational Research, 8(11B), 6263-6272.
  • Aldeman, N. L. S., de Sá Urtiga Aita, K. M., Machado, V. P., da Mata Sousa, L. C. D., Coelho, A. G. B., da Silva, A. S., ... & do Monte, S. J. H. (2021). Smartpathk: a platform for teaching glomerulopathies using machine learning. BMC Medical Education, 21(1), 248.
  • Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
  • Bond, M., Zawacki‐Richter, O., & Nichols, M. (2019). Revisiting five decades of educational technology research: A content and authorship analysis of the British Journal of Educational Technology. British Journal of Educational technology, 50(1), 12-63.
  • Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P, Sin W.C & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1), 4.
  • Brandão, A., Pedro, L., & Zagalo, N. (2024). Teacher professional development for a future with generative artificial intelligence–an integrative literature review. Digital Education Review, (45), 151-157.
  • Bulut, M. A., Davarcı, M., Bozdoğan, N. K., & Sarpkaya, Y. (2024). Yapay zekânın eğitim üzerindeki etkileri. Ulusal Eğitim Dergisi, 4(3), 976-986.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2009). Bilimsel Araştırma Yöntemleri. Pegem Akademi.
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
  • Chiu, T. K. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 1-17.
  • Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118.
  • Clarke, V., & Braun, V. (2017). Thematic analysis. The Journal of Positive Psychology, 12(3), 297-298.
  • Creswell, J. (2013). Qualitative research narrative structure. pdf. Qualitative Inquiry and Research Design: Choosing Among Five Approaches,, 220-230
  • Çarıkçı, K., Meral, H., Berkil, S., Çalışır, A., Önala, L., & Arslan, Ö. (2024). Nitel araştırmalarda tematik analiz. Socrates Journal of Interdisciplinary Social Studies, 10(37), 127-140.
  • Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205, 219.
  • Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10(1), 12. Earl, L. M. (2012). Assessment as learning: Using classroom assessment to maximize student learning. Corwin Press.
  • Elgohary, H. K. A., & Al-Dossary, H. K. (2022). The effectiveness of an educational environment based on artificial intelligence techniques using virtual classrooms on training development. International Journal of Instruction, 15(4), 1133-1150.
  • Ezquerra, A., Agen, F., Rodríguez-Arteche, I., & Ezquerra-Romano, I. (2022). Integrating Artificial Intelligence into Research on Emotions and Behaviors in Science Education. Eurasia Journal of Mathematics, Science and Technology Education, 18(4).
  • Fahimirad, M., & Kotamjani, S. S. (2018). A review on application of artificial intelligence in teaching and learning in educational contexts. International Journal of Learning and Development, 8(4), 106-118.
  • Fernández Herrero, J., Gómez Donoso, F., & Roig Vila, R. (2023). The first steps for adapting an artificial intelligence emotion expression recognition software for emotional management in the educational context. British Journal of Educational Technology, 54(6), 1939-1963.
  • Fitria, T. N. (2021). Artificial intelligence (AI) in education: Using AI tools for teaching and learning process. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 4, No. 1, pp. 134-147).
  • Fu, R., Huang, Y., & Singh, P. V. (2020). Artificial intelligence and algorithmic bias: Source, detection, mitigation, and implications. In Pushing the Boundaries: Frontiers in Impactful OR/OM Research (pp. 39-63). INFORMS.
  • Öksüz Gül, F. (2024). Eğitimde yapay zekâ: Eğitim Fakültesi akademisyenleri için fırsatlar ve riskler. Medeniyet Eğitim Araştırmaları Dergisi, 8(2), 71-97.
  • Holmes, W., & Littlejohn, A. (2024). Artificial intelligence for professional learning. In Handbook of Artificial Intelligence at Work (pp. 191-211). Edward Elgar Publishing.
  • Kara, Ö. G. A., Bingöl, Ö. G. İ., & Yıldırım, S. (2024). Eğitimde Yapay Zekâ Üzerine Yapılmış Çalışmaların Bibliyometrik Analizi. Dede Korkut Eğitim Araştırmaları Kongresi, 3-5 Ekim 2024. Bayburt.
  • Karan, B., & Angadi, G. R. (2023). Potential risks of artificial intelligence integration into school education: A systematic review. Bulletin of Science, Technology & Society, 43(3-4), 67-85.
  • Karatop, B. (2015). Yerli Otomotiv Yatırımında Odak Strateji Karar Modeli: Bulanık AHP Uygulaması, Doğu Kütüphanesi.
  • Kennedy, L., ve Macneela, P. (2013). Adolescent acculturation experiences: A meta-ethnography of qualitative research. International Journal of Intercultural Relations (40), 126-140. https://doi.org/10.1016/j.ijintrel.2013.11.003
  • Khan, I. A., & Paliwal, N. W. (2023). ChatGPT and digital inequality: A rising concern. Sch J App Med Sci, 9, 1646-7. İşler, B., & Kılıç, M. (2021). Eğitimde yapay zekâ kullanımı ve gelişimi. Yeni Medya Elektronik Dergisi, 5(1), 1-11.
  • Lampou, R. (2023). The integration of artificial intelligence in education: Opportunities and challenges. Review of Artificial Intelligence in Education, 4, e15-e15.
  • Lecompte, M. D., ve Goetz, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 31-60. https://doi.org/10.3102/00346543052001031
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.
  • Mah, D. K., & Groß, N. (2024). Artificial intelligence in higher education: exploring faculty use, self-efficacy, distinct profiles, and professional development needs. International Journal of Educational Technology in Higher Education, 21(1), 58.
  • Miles, M. B., & Huberman, A. M. (2019). Nitel veri analizi (3. baskı). (Çev. Ed.: S.Akbaba Altun & A. Ersoy). Pegem.
  • Mohammed, P. S., & ‘Nell’Watson, E. (2019). Towards inclusive education in the age of artificial intelligence: Perspectives, challenges, and opportunities. Artificial Intelligence and Inclusive Education: Speculative futures and emerging practices, 17-37.
  • Mutlu, T. (2023). Yapay Zekâ ve Girişimcilik. Yeni Dünyada Girişimcilik, Gökmen Durmuş, Mehmet Seyhan, Editör, Gazi Kitabevi, Ankara, ss.1-18, 2023
  • Ng, D. T. K., Su, J., Leung, J. K. L., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy education in secondary schools: a review. Interactive Learning Environments, 1-21.
  • Qadir, J. (2023). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. In 2023 IEEE Global Engineering Education Conference (EDUCON) (pp. 1-9). IEEE.
  • Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice. Sage publications.
  • Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
  • Poquet, O., & De Laat, M. (2021). Developing capabilities: Lifelong learning in the age of AI. British Journal of Educational Technology, 52(4), 1695-1708.
  • Pratama, M. P., Sampelolo, R., & Lura, H. (2023). Revolutionizing education: harnessing the power of artificial intelligence for personalized learning. Klasikal: Journal of education, language teaching and science, 5(2), 350-357.
  • Saputra, I., Astuti, M., Sayuti, M., & Kusumastuti, D. (2023). Integration of Artificial Intelligence in Education: Opportunities, Challenges, Threats and Obstacles. A Literature Review. The Indonesian Journal of Computer Science, 12(4).
  • Tan, X., Cheng, G., & Ling, M. H. (2024). Artificial Intelligence in Teaching and Teacher Professional Development: A Systematic Review. Computers and Education: Artificial Intelligence, 100355.
  • Terwiesch, C. (2023). Would chat GPT3 get a Wharton MBA? A prediction based on its performance in the operations management course. Mack Institute for Innovation Management at the Wharton School, University of Pennsylvania.
  • Thompson, A., Peteraf, M., Gamble, J., Strickland III, A. J., & Jain, A. K. (2016). Crafting & Executing Strategy, The Quest for Competitive Advantage: Concepts and Cases. (20th Ed.). McGraw-Hill Education.
  • Türnüklü, A. (2000). Eğitimbilim araştırmalarında etkin olarak kullanılabilecek nitel bir araştırma tekniği: Görüşme. Kuram ve Uygulamada Eğitim Yönetimi Dergisi, 24, 543-559.
  • UNESCO, (2024). AI competency framework for teachers. https://www.unesco.org/en/articles/ai-competency-framework-teachers.
  • Ulla, M. B., Perales, W. F., & Busbus, S. O. (2023). ‘To generate or stop generating response’: Exploring EFL teachers’ perspectives on ChatGPT in English language teaching in Thailand. Learning: Research and Practice, 9(2), 168-182.
  • Uğur, S., (2023). Teknolojik tekillik bağlamında açıköğretim sisteminin dijital dönüşüm süreci. İçinde S. Koçdar, A. Z. Özgür, K. Çekerol, İ. Kayabaş (Eds.). Açıköğretimle 40 Yıl (ss.669-692), Anadolu Yayınları.
  • Valentin, E. K. (2001). SWOT analysis from a resource-based view. Journal of marketing theory and practice, 9(2), 54-69.
  • Vistorte, A. O. R., Deroncele-Acosta, A., Ayala, J. L. M., Barrasa, A., López-Granero, C., & Martí-González, M. (2024). Integrating artificial intelligence to assess emotions in learning environments: a systematic literature review. Frontiers in Psychology, 15, 1387089.
  • Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long range planning, 15 (2), 54-66.
  • Willis, J., Adie, L., & Klenowski, V. (2013). Conceptualising teachers’ assessment literacies in an era of curriculum and assessment reform. The Australian Educational Researcher, 40, 241-256. https://doi.org/10.1007/s13384-013-0089-9.
  • Wiliam, D. (2011). What is assessment for learning?. Studies in Educational Evaluation, 37(1), 3-14. https://doi.org/10.1016/j.stueduc.2011.03.001.
  • Yıldırım, P., ve Şimşek, P. (2021). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Zanetti, M., Rendina, S., Piceci, L., & Cassese, F. P. (2020). Potential risks of artificial intelligence in education. Form@ re-Open Journal per la formazione in rete, 20(1), 368-378.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Öğretim Teknolojileri, Eğitim Teknolojisi ve Bilgi İşlem
Bölüm Araştırma Makalesi
Yazarlar

Emel Güler 0000-0002-0492-4492

Serap Uğur 0000-0002-4211-1396

Can Güler 0000-0002-4631-502X

Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 30 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 74

Kaynak Göster

APA Güler, E., Uğur, S., & Güler, C. (2025). Eğitim fakültesi öğretim elemanlarının üretken yapay zekâya yönelik farkındalıklarının belirlenmesi ve öğretmen yetiştirmede kullanımına yönelik öneriler. Mehmet Akif Ersoy University Journal of Education Faculty(74), 618-647. https://doi.org/10.21764/maeuefd.1627851

   Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi

33574