Araştırma Makalesi
BibTex RIS Kaynak Göster

CORE QUESTION EFFECTS TO IMPROVE QUALITY IN MATHEMATICS TEACHING

Yıl 2018, Sayı: 47, 179 - 201, 15.07.2018
https://doi.org/10.21764/maeuefd.322021

Öz

How to improve
your qualification in mathematics teaching is still being discussed. During the
teaching process, students are shown to be willing to participate effectively
in the learning environment in a way that they find the content of their
learning to be enjoyable and remarkable. The aim of this study is to examine
the contribution of the core question to the realization of the objectives of
mathematics teaching, which is based on the impressive aspects of learning
theories and models for enhancing quality in mathematics teaching. The specific
case study that will lead to the identification of the methods to be used for
this purpose and to the interpretation of the findings has been determined as a
research study. This study was conducted with 24 students in the 9th grade of a
high school in Bursa. Qualitative data collection tools were used in the study.
Activities were prepared and activities were recorded and analyzed. Core
question, unlike other teaching designs that It is determined that the flow of
instruction is natural and that teaching is integrated with the skill. In this
study, it was determined that the problem of bearing was the aim of teaching
mathematics and thus, increased the quality of teaching mathematics. The
results of the study are expected to contribute positively to teaching
practices.

Kaynakça

  • Açıkgöz, K. Ü. (2003). Aktif öğrenme. İzmir: Eğitim Dünyası Yayınları.
  • Akar, E. (2005). “Effectiveness of 5E Learning Cycle Model on Students” Understanding of Acid and Base Concepts. Unpublished Master Thesis. Middle East Technical University, Ankara.
  • Altun, M. (2015). Ortaokullarda Matematik Öğretimi, (11.Baskı). Bursa: Aktüel Yayıncılık.
  • Bandura, A. (1989). Social Cognitive Theory. IN: Annuals of Child Development, 6, 1-60. Greenwich, CT: Jai Press LTD.
  • Bandura, A. (1999). Social Cognitive Theory: An Agentic Perspective. Asian Journal of Social Psychology, 2, 21-41.
  • Batdı, V. (2014). Etkinlik Temelli Öğrenme Yaklaşımının Akademik Başarıya Etkisi. E-International Journal of Educational Research. 5(3), 39-55.
  • Baxter, P. & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The qualitative report, 13(4), 544-559.
  • Bishop, J. W., Otto, A. D., & Lubinski, C. A. (2001). Promoting algebraic reasoning using students' thinking. Mathematics Teaching in the Middle School, 6(9), 508.
  • Bleicher, R. E., (2005). “Learning The Learning Cycle: The Differantial Effect on Elementary Preservise Teachers”.School Science and Mathematics.105(2), 61-72.
  • Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for research in mathematics education, 41-62.
  • Boyer, K. R. (2002). Using active learning strategies to motivate students. Mathematics Teaching in the Middle School, 8(1), 48.
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. National Academy Press Washington, D.C.
  • Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., &Landes N. (2006). The BSCS 5e instructional model: origins, effectiveness, and applications. Colorado Springs: BSCS.
  • Connolly, T., Arkes, H. R., & Hammond, K. R. (2000). Experts. Judgement and Decision Making-An Interdisciplinary Reader, Cambridge, UK, 301-303.
  • Davey, L. (1991). The application of case study evaluations. Practical Assessment, Research & Evaluation, 2(9), 1.
  • De Corte, E. (2004). Mainstreams and perspectives in research on learning (mathematics) from instruction. Applied Psychology, 2(53), 279–310.
  • Doruk, B. K. & Umay, A. (2011). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41).
  • Eraslan, A. (2011). İlköğretim Matematik Öğretmen Adaylarının Model Oluşturma Etkinlikleri ve Bunların Matematik Öğrenimine Etkisi Hakkındaki Görüşleri. İlköğretim Online, 10(1).
  • Fedewa, A. L. and Ahn, S. 2011. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Research Quarterly for Exercise and Sport, 82: 521–535.
  • Gillham, B. (2000). Case study research methods. Bloomsbury Publishing.
  • Grandgenett, N., Harris, J., & Hofer, M. (2010). An activity-based approach to technology integration in the Mathematics classroom. NCSM Journal, 11, 19-28.
  • Gravemeijer, K. (1994). Educational development and developmental research in mathematics education. Journal for research in Mathematics Education, 443-471.
  • Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical thinking and learning, 6(2), 105-128.
  • Gravemeijer, K., Heuvel-Panhuizen, M. & Streefland, L. (1990). Contexts free productions: tests and geometry in realistic mathematics education. Research group for Mathematical Education and Educational Computer Centre, StateUniversity of Utrecht.
  • Gutstein, E. 8c Peterson, B.(Eds.).(2005). Rethinking mathematics: Teaching social justice by the numbers. Milwaukee, WI: Rethinking Schools.
  • Johnson, D. W. & Johnson, R. (1991). Learning mathematics and cooperative learning: Lesson plans for teachers. Edina, MN: Interaction Book Company.
  • Johnson, D. W., Johnson, R., & Smith, K. (1991). Active learning: Cooperative learning in the college classroom. Edina, MN: Interaction Book Company. Second Edition, 1998. Third Edition, 2006.
  • Jones, I. & Pratt, D. (2006). Connecting the equals sign. International Journal of Computers for Mathematical Learning, 11(3), 301-325.
  • Karasar, N. (1995). Bilimsel Araştırma Yöntemi. ss:107 Ankara: Sim Matbaası.
  • Kyriacou, C. (1998). Essential teaching skill (2th ed.). United Kingdom: Nelson Thornes.
  • Kyricaou, C. (1992). Active learning in secondary school mathematics. Britics Educational Research Journal, 18(3).
  • Marlowe, B. A., & Page, M. L. (2005). Creating and sustaining the constructivist classroom. Corwin Press.
  • Milli Eğitim Bakanlığı (2011). Ortaöğretim Matematik (9-12.Sınıflar) http://ttkb.meb.gov.tr/program.aspx?islem=1vekno=86 adresinden 14 Ocak 2015 tarihinde alınmıştır.
  • National Council of Teachers of Mathematics. (1989; 2000). Curriculum and evaluation standandards for scholl mathematics.Reston, VA: NCTM.
  • Nelissen, J. M., & Tomic, W. (1998). Representations in Mathematic Education. http://files.eric.ed.gov/fulltext/ED428950.pdfadresinden 9 Mayıs 2014 tarihinde ulaşılmıştır.
  • Öncü, S. (2007). The relationship between instructor practices and student engagement: What engages students in blended learning environments? ProQuest.
  • Piaget, J. (1971). Biology and knowledge: An essay on the relations between organic regulations and cognitive processes.
  • Piaget, J. (1973). The psychology of intelligence. Totowa, N.J, Littlefield, Adams.
  • Santos-Trigo, M. (1996). An exploration of trategies used by students to solve problems with multiple ways of solution, Journal of Mathematical Behaviour,15, 263-284.
  • Scheiner, T. (2016). New light on old horizon: Constructing mathematical concepts, underlying abstraction processes, and sense making strategies. Educational Studies in Mathematics, 91(2), 165-183.
  • Skemp, R. R. (1987). The psychology of learning mathematics. Psychology Press.
  • Smith, J. (1999). Active learning of mathematics. Mathematics teaching in the middle school, 5(2), 108.
  • Stake, R. (2000). “Case study” in: Handbook of Analitative Research.
  • Taber, K. S. (2013). Ken Springer: Educational Research: A Contextual Approach. Science & Education, 1-13.
  • Turner, J. C. & Patrick, H. (2004). Motivational influences on student participation in classroom learning activities. Teachers College Record, 106(9), 1759-1785.
  • Ubuz, B., Erbaş, A. K., Çetinkaya, B., & Özgeldi, M. (2010). Exploring the quality of the mathematical tasks in the new Turkish elementary school mathematics curriculum guidebook: the case of algebra. ZDM, 42(5), 483-491.
  • Uğurel, I. & Bukova-Güzel, E. (2010). Matematiksel Öğrenme Etkinlikleri Üzerine Bir Tartışma Ve Kavramsal Bir Çerçeve Önerisi. H. Ü. Eğitim Fakültesi Dergisi(H.U. Journal of Education), 39 (2010), 333-347.
  • Yin, R. K. (2003). Case Study Research: Design and Methods,(3rd) Sage Publications. Thousand Oaks, California.

MATEMATİK ÖĞRETİMİNDE NİTELİĞİ ARTTIRMADA TAŞIYICI SORU ÖRNEĞİ

Yıl 2018, Sayı: 47, 179 - 201, 15.07.2018
https://doi.org/10.21764/maeuefd.322021

Öz

Matematik
öğretiminde niteliğin nasıl artırılacağı hala tartışılmaktadır. Öğretim
sürecinde öğrenciler, öğrenecekleri konuların içeriğini keyifli ve dikkat
çekici buldukları ölçüde öğrenme ortamına etkin olarak katılım isteği
gösterirler. Bu çalışmanın amacı, matematik öğretiminde niteliği artırmaya
yönelik
öğrenme kuram ve
modellerinin etkileyici yönlerini temele alan taşıyıcı
sorunun  matematik öğretiminin amaçlarının
gerçekleştirilmesine katkısının incelenmesidir. Bu
amaca ulaşabilmek için kullanılacak metotların belirlenmesinde ve bulguların
yorumlanmasında yol gösterecek özel durum çalışması, araştırmanın deseni olarak
belirlenmiştir.
Bu durum çalışması
bir lisenin 9. sınıfında öğrenim gören 24 öğrenci ile yapılmıştır. Araştırmada
nitel veri toplama araçları kullanılmıştır. Öğretimde etkinlikler hazırlanmış
ve etkinlik uygulamaları videoya kaydedilmiş ve analizleri yapılmıştır. Taşıyıcı soru, diğer öğretim tasarımlarından farklı
olarak, öğretim akışının doğal olması ve öğretimin beceri ile bütünleştirilmesine
yer vermesi olarak belirlenmiştir. Bu çalışmada taşıyıcı sorunun matematik
öğretim amaçlarını destekleği ve matematik öğretiminde niteliği arttırdığı
belirlenmiştir. Çalışmanın sonuçlarının öğretim uygulamalarına olumlu yönde
katkı yapacağı beklenmektedir.

Kaynakça

  • Açıkgöz, K. Ü. (2003). Aktif öğrenme. İzmir: Eğitim Dünyası Yayınları.
  • Akar, E. (2005). “Effectiveness of 5E Learning Cycle Model on Students” Understanding of Acid and Base Concepts. Unpublished Master Thesis. Middle East Technical University, Ankara.
  • Altun, M. (2015). Ortaokullarda Matematik Öğretimi, (11.Baskı). Bursa: Aktüel Yayıncılık.
  • Bandura, A. (1989). Social Cognitive Theory. IN: Annuals of Child Development, 6, 1-60. Greenwich, CT: Jai Press LTD.
  • Bandura, A. (1999). Social Cognitive Theory: An Agentic Perspective. Asian Journal of Social Psychology, 2, 21-41.
  • Batdı, V. (2014). Etkinlik Temelli Öğrenme Yaklaşımının Akademik Başarıya Etkisi. E-International Journal of Educational Research. 5(3), 39-55.
  • Baxter, P. & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The qualitative report, 13(4), 544-559.
  • Bishop, J. W., Otto, A. D., & Lubinski, C. A. (2001). Promoting algebraic reasoning using students' thinking. Mathematics Teaching in the Middle School, 6(9), 508.
  • Bleicher, R. E., (2005). “Learning The Learning Cycle: The Differantial Effect on Elementary Preservise Teachers”.School Science and Mathematics.105(2), 61-72.
  • Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for research in mathematics education, 41-62.
  • Boyer, K. R. (2002). Using active learning strategies to motivate students. Mathematics Teaching in the Middle School, 8(1), 48.
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. National Academy Press Washington, D.C.
  • Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., &Landes N. (2006). The BSCS 5e instructional model: origins, effectiveness, and applications. Colorado Springs: BSCS.
  • Connolly, T., Arkes, H. R., & Hammond, K. R. (2000). Experts. Judgement and Decision Making-An Interdisciplinary Reader, Cambridge, UK, 301-303.
  • Davey, L. (1991). The application of case study evaluations. Practical Assessment, Research & Evaluation, 2(9), 1.
  • De Corte, E. (2004). Mainstreams and perspectives in research on learning (mathematics) from instruction. Applied Psychology, 2(53), 279–310.
  • Doruk, B. K. & Umay, A. (2011). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41).
  • Eraslan, A. (2011). İlköğretim Matematik Öğretmen Adaylarının Model Oluşturma Etkinlikleri ve Bunların Matematik Öğrenimine Etkisi Hakkındaki Görüşleri. İlköğretim Online, 10(1).
  • Fedewa, A. L. and Ahn, S. 2011. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Research Quarterly for Exercise and Sport, 82: 521–535.
  • Gillham, B. (2000). Case study research methods. Bloomsbury Publishing.
  • Grandgenett, N., Harris, J., & Hofer, M. (2010). An activity-based approach to technology integration in the Mathematics classroom. NCSM Journal, 11, 19-28.
  • Gravemeijer, K. (1994). Educational development and developmental research in mathematics education. Journal for research in Mathematics Education, 443-471.
  • Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical thinking and learning, 6(2), 105-128.
  • Gravemeijer, K., Heuvel-Panhuizen, M. & Streefland, L. (1990). Contexts free productions: tests and geometry in realistic mathematics education. Research group for Mathematical Education and Educational Computer Centre, StateUniversity of Utrecht.
  • Gutstein, E. 8c Peterson, B.(Eds.).(2005). Rethinking mathematics: Teaching social justice by the numbers. Milwaukee, WI: Rethinking Schools.
  • Johnson, D. W. & Johnson, R. (1991). Learning mathematics and cooperative learning: Lesson plans for teachers. Edina, MN: Interaction Book Company.
  • Johnson, D. W., Johnson, R., & Smith, K. (1991). Active learning: Cooperative learning in the college classroom. Edina, MN: Interaction Book Company. Second Edition, 1998. Third Edition, 2006.
  • Jones, I. & Pratt, D. (2006). Connecting the equals sign. International Journal of Computers for Mathematical Learning, 11(3), 301-325.
  • Karasar, N. (1995). Bilimsel Araştırma Yöntemi. ss:107 Ankara: Sim Matbaası.
  • Kyriacou, C. (1998). Essential teaching skill (2th ed.). United Kingdom: Nelson Thornes.
  • Kyricaou, C. (1992). Active learning in secondary school mathematics. Britics Educational Research Journal, 18(3).
  • Marlowe, B. A., & Page, M. L. (2005). Creating and sustaining the constructivist classroom. Corwin Press.
  • Milli Eğitim Bakanlığı (2011). Ortaöğretim Matematik (9-12.Sınıflar) http://ttkb.meb.gov.tr/program.aspx?islem=1vekno=86 adresinden 14 Ocak 2015 tarihinde alınmıştır.
  • National Council of Teachers of Mathematics. (1989; 2000). Curriculum and evaluation standandards for scholl mathematics.Reston, VA: NCTM.
  • Nelissen, J. M., & Tomic, W. (1998). Representations in Mathematic Education. http://files.eric.ed.gov/fulltext/ED428950.pdfadresinden 9 Mayıs 2014 tarihinde ulaşılmıştır.
  • Öncü, S. (2007). The relationship between instructor practices and student engagement: What engages students in blended learning environments? ProQuest.
  • Piaget, J. (1971). Biology and knowledge: An essay on the relations between organic regulations and cognitive processes.
  • Piaget, J. (1973). The psychology of intelligence. Totowa, N.J, Littlefield, Adams.
  • Santos-Trigo, M. (1996). An exploration of trategies used by students to solve problems with multiple ways of solution, Journal of Mathematical Behaviour,15, 263-284.
  • Scheiner, T. (2016). New light on old horizon: Constructing mathematical concepts, underlying abstraction processes, and sense making strategies. Educational Studies in Mathematics, 91(2), 165-183.
  • Skemp, R. R. (1987). The psychology of learning mathematics. Psychology Press.
  • Smith, J. (1999). Active learning of mathematics. Mathematics teaching in the middle school, 5(2), 108.
  • Stake, R. (2000). “Case study” in: Handbook of Analitative Research.
  • Taber, K. S. (2013). Ken Springer: Educational Research: A Contextual Approach. Science & Education, 1-13.
  • Turner, J. C. & Patrick, H. (2004). Motivational influences on student participation in classroom learning activities. Teachers College Record, 106(9), 1759-1785.
  • Ubuz, B., Erbaş, A. K., Çetinkaya, B., & Özgeldi, M. (2010). Exploring the quality of the mathematical tasks in the new Turkish elementary school mathematics curriculum guidebook: the case of algebra. ZDM, 42(5), 483-491.
  • Uğurel, I. & Bukova-Güzel, E. (2010). Matematiksel Öğrenme Etkinlikleri Üzerine Bir Tartışma Ve Kavramsal Bir Çerçeve Önerisi. H. Ü. Eğitim Fakültesi Dergisi(H.U. Journal of Education), 39 (2010), 333-347.
  • Yin, R. K. (2003). Case Study Research: Design and Methods,(3rd) Sage Publications. Thousand Oaks, California.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mustafa Çağrı Gürbüz

Murat Altun

Murat Ağsu Bu kişi benim

Yayımlanma Tarihi 15 Temmuz 2018
Gönderilme Tarihi 16 Haziran 2017
Yayımlandığı Sayı Yıl 2018 Sayı: 47

Kaynak Göster

APA Gürbüz, M. Ç., Altun, M., & Ağsu, M. (2018). MATEMATİK ÖĞRETİMİNDE NİTELİĞİ ARTTIRMADA TAŞIYICI SORU ÖRNEĞİ. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi(47), 179-201. https://doi.org/10.21764/maeuefd.322021