Isolation, identification and characterization of antagonistic and plant growth promoting mechanisms of Pseudomonas spp. isolated from forest soils
Yıl 2025,
Sayı: Advanced Online Publication, 840 - 853
Yusuf Gümüş
,
Soner Soylu
,
Aysun Uysal
,
Merve Oğuz
,
Emine Mine Soylu
,
Şener Kurt
Öz
This research focused on evaluating the plant growth-promoting traits and biocontrol capabilities of Pseudomonas strains isolated from soil samples obtained from two forested regions in Hatay Province. After isolation, the pathogenicity of 16 different Pseudomonas isolates was evaluated using the hypersensitivity reaction (HR) and soft rot assay. Non-pathogenic isolates were identified to species level by MALDI-TOF MS analysis. The selected strains were analysed under laboratory conditions for their plant-promoting and pathogen-suppressive properties, including production of siderophores and proteases, phosphate solubilisation and synthesis of hydrogen cyanide (HCN) and ammonia (NH₃). In particular, P. putida FS12 exhibited high siderophore production, P. extremorientalis FS3 showed a strong ability to dissolve phosphate and P. mandelii FS13 was characterised by strong HCN and NH₃ production. Among the isolates, P. brassicacearum FS16 showed a broad spectrum of biocontrol potential combining several useful mechanisms. These results show that microbial diversity in forest soil is a valuable reservoir for agriculturally useful compounds. The identified Pseudomonas strains are proposed as candidates for the development of biofertilisers or biopesticides, and have the potential to offer environmentally friendly alternatives for sustainable agriculture.
Etik Beyan
Ethical approval is not applicable, because this article does not contain any studies with human or animal subjects.
Kaynakça
-
Ahmad Khan, B., Nadeem, M.A., Nawaz, H., Amin, M.M., Abbasi, G.H., Nadeem, M., Ali, M., Ameen, M., Javaid, M. M., Maqbool, R., Ikram, M., & Ayub, M.A. (2023). Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_5
-
Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. International Journal of Molecular Sciences, 21 (7), 2590. https://doi.org/10.3390/ijms21072590
-
Aktan, Z.C., & Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSU Tarım ve Doğa Dergisi, 23, 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
-
Bakker, A.W., & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19, 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
-
Bashan, Y., & Holguin, G. (1998). Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology & Biochemistry 30, 1225-1228. https://doi.org/10.1016/S0038-0717(97)00187-9
-
Berg, G. (2009). Plantemicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84, 11-18. https://doi.org/10.1007/s00253-009-2092-7
-
Cappuccino J.C., & Sherman N. (1992). “Negative staining,” in Microbiology: A Laboratory Manual. 3rd Edn. ed. Sherman J. C. C. A. N. (Redwood City: Benjamin/Cummings; ), 125–179.
-
Cartieaux, F., Thibaud, M.C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Gerbaud, A., Robaglia, C., Somerville, S., & Nussaume, L. (2003). Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. The Plant Journal, 36, 177-188. https://doi.org/10.1046/j.1365-313X.2003.01867.x
-
Collinge, D.B., Jensen, D.F., Rabiey, M., Sarrocco, S., Shaw, M.W., & Shaw, R.H. (2022) Biological control of plant diseases – What has been achieved and what is the direction?. Plant Pathology, 71, 1024-1047. https://doi.org/10.1111/ppa.13555
-
Curtis, T.P., Sloan, W.T., & Scannell, J.W. (2002). Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the USA, 99, 10494-10499. https://doi.org/10.1073/pnas.142680199
-
Duman, K., & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
-
Dutta J., Handique P.J., & Thakur, D. (2015). Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 6, 1252. https://doi.org/10.3389/fmicb.2015.01252
-
Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15 (10), 579-590. https://doi.org/10.1038/nrmicro.2017.87
-
Fravel, D.R. (1988). Role of antibiosis in the biocontrol of plant disease. Annual Review of Phytopathology, 26, 75-91. https://doi.org/10.1146/annurev.py.26.090188.000451
-
Gardener, B.B.M., Gutierrez, L.J., Joshi, R., Edema, R., & Lutton, E. (2005). Distribution and biocontrol potential of phlD (+) Pseudomonads in corn and soybean fields. Phytopathology, 95, 715-724. https://doi.org/10.1094/PHYTO-95-0715
-
Gümüş, Y., & Soylu, E.M. (2024). Endofit ve epifit bakteri izolatlarının bazı turunçgil fungal hastalık etmenlerine karşı in vitro biyokontrol etkinlik ve etki mekanizmalarının belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 27 (6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337
-
Haque, M.M., Mosharaf, M.K., Khatun, M., Haque, M.A., Biswas, M.S., Islam, M.S., Islam, M.M., Shozib, H.B., Miah, M.M.U., Molla, A.H., & Siddiquee, M.A. (2020). Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Frontiers in Microbiology, 11, 542053. https://doi.org/10.3389/fmicb.2020.542053
-
Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Nilsson, R.H., Hallam, S.J., & Mohn, W.W. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME Journal, 6 (12), 2199-2218. https://doi.org/10.1038/ismej.2012.84
-
Horner-Devine, M.C., Leibold, M.A., Smith, V.H., & Bohannan, B.J.M. (2003). Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters, 6, 613-622. https://doi.org/10.1046/j.1461-0248.2003.00472.x
-
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Hogberg, M.N., Nyberg, G., Ottosson-Löfvenius, M., & Read, D.J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792. https://doi.org/10.1038/35081058
-
Janssen, P.H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72 (3), 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
-
Jiménez-Gómez, A., Saati-Santamaría, Z., Kostovcik, M., Rivas, R., Velázquez, E., Mateos, P.F., Menéndez, E., & García-Fraile, P. (2020). Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. Crops. Agronomy, 10 (11), 1788. https://doi.org/10.3390/agronomy10111788
-
Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M., & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
-
Khojasteh, M., Darzi Ramandi, H., Taghavi, S.M., Taheri, A., Rahmanzadeh, A., Chen, G., Foolad, M.R., & Osdaghi, E. (2024). Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. Plant Cell Reports, 43, 184 https://doi.org/10.1007/s00299-024-03268-x
-
Kowalchuk, G.A., & Stephen, J.R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55, 485-529. https://doi.org/10.1146/annurev.micro.55.1.485
-
Kumar, P., Dubey, R.C., & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493-499. https://doi.org/10.1016/j.micres.2012.05.002
-
Leake, J.R., Johnson, D., Donnelly, D.P., Muckle, G.E., Boddy, L., & Read, D.J. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82, 1016-1045. https://doi.org/10.1139/b04-060
-
Lelliot, R.A., & Stead, D.E. (1987). Methods for the Diagnosis of Bacterial Diseases of Plants. (T.F. Preece, Editor). In: Methods in Plant Pathology, Vol 2, Blackwell Scientific Publications. pp. 176-177, Oxford.
-
Leong, J. (1986). Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology, 24, 187-209. https://doi.org/10.1146/annurev.py.24.090186.001155
-
López-Hernández, J., García-Cárdenas, E., López-Bucio, J.S., Jiménez-Vázquez, K.R., de la Cruz, H.R., Ferrera-Rodríguez, O., Santos-Rodríguez, D.L., Ortiz-Castro, R., & López-Bucio, J. (2023). Screening of phosphate solubilization identifies six Pseudomonas species with contrasting phytostimulation properties in Arabidopsis seedlings. Microbial Ecology, 86 (1), 431-445. https://doi.org/10.1007/s00248-022-02080-y
-
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-566. https://doi.org/10.1146/annurev.micro.62.081307.162918
-
Marques, A.P., Pires, C., Moreira, H., Rangel, A.O., & Castro, P.M. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42, 1229-1235. https://doi.org/10.1016/j.soilbio.2010.04.014
-
Nega, A. (2014). Review on Concepts in Biological Control of Plant Pathogens. Journal of Biology, Agriculture and Healthcare, 4 (27), 33-54.
-
Pandit, M.A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C.D., Mishra, V., & Kaur, J. (2022). Major biological control strategies for plant pathogens. Pathogens, 11 (2), 273. https://doi.org/10.3390/pathogens11020273
-
Paramasivan, M., Ramjegathesh, R., Rajendran, L., Thangam, A., Indiragandhi, P., Ravichandran, V., Johnsonc, I., Karthikayan, G., & Karthikeyan, M. (2025). Biocontrol and growth promotion of groundnut by Pseudomonas putida GN1 against soilborne pathogens. Archives of Phytopathology and Plant Protection, 58 (5), 282-301. https://doi.org/10.1080/03235408.2025.2476217
-
Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J.M., De Vos, P., & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103, 1007-1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
-
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2008). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341-361. https://doi.org/10.1007/s11104-008-9568-6
-
Rahmanzadeh, A., Khahani, B., Taghavi, S. M., Khojasteh, M., & Osdaghi, E. (2022). Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics, 23 (1), 680. https://doi.org/10.1186/s12864-022-08914-w
-
Rillig, M.C., & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
-
Rubio-Santiago, J., Hernández-Morales, A., Rolón-Cárdenas, G.A., Arvizu-Gómez, J.L., Soria-Guerra, R.E., Carranza-Álvarez, C., Rubio-Salazar, J.E., Rosales-Loredo, S., Pacheco-Aguilar, J.R., Macías-Pérez, J.R., Aldaba-Muruato, L.R., & Vázquez-Martínez, J. (2023). Characterization of endophytic bacteria isolated from Typha latifolia and their effect in plants exposed to either Pb or Cd. Plants, 12 (3), 498. https://doi.org/10.3390/plants12030498
-
Santoyo, G., Moreno-Hagelsieb, G., Carmen Orozco-Mosqueda, M., & Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. https://doi.org/10.1016/j.micres.2015.11.008
-
Saranraj, P., Sivasakthivelan, P., & Sakthi, S.S. (2013). Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore District, Tamil Nadu, India. African Journal of Basic and Applied Sciences, 5 (2), 95-101. https://doi.org/10.5829/idosi.ajbas.2013.5.2.2934
-
Sauvêtre, A., & Schröder, P. (2015). Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science, 6, 83. https://doi.org/10.3389/fpls.2015.00083
-
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3, 430-439. https://doi.org/10.1038/s41559-018-0793-y
-
Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
-
Sharma, P., Verma, P.P., & Kaur, M. (2017). Comparative effect of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida on the growth of replanted apple. Journal of Pure and Applied Microbiology, 11 (2), 1141-1147. https://doi.org/10.22207/JPAM.11.2.60
-
Singh, R.P., Jha, P.N., & Mishra, S. (2021). Isolation and characterization of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on plant growth and root colonization. Frontiers in Microbiology, 12, 700082. https://doi.org/10.3389/fmicb.2021.700082
-
Smith, S.E., & Read, D.J. (1997). Mycorrhizal Symbiosis, 2nd edn. Academic Press, London, UK.
-
Soylu, S., Soylu, E.M., Kurt, Ş., & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
-
Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Journal of Agriculture and Nature, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
-
Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.18016/10.13080/z-a.2021.108.039
-
Sprent, J.I. (2001). Nodulation in Legumes. Royal Bot. Gardens, Kew, UK.
-
Sturz, A.V., Christie, B.R., & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19, 1-30. https://doi.org/10.1080/07352680091139169
-
Şahin, N. (2023). Ekstrem şartlardan izole edilen Pseudomonas extremorientalis’ın fosfor çözme potansiyelinin araştırılması ve bu uygulamanın soğan bitkisinin fosfor alımı üzerine etkisi (Yüksek lisans tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü).
-
Tangül, G.A., & Soylu, S. (2025). Bamya (Abelmoschus esculentus L.) bitkilerinin tohum ve toprak kökenli fungal hastalık etmenlerine karşı antagonist bakterilerin in vitro biyokontrol potansiyellerinin belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 28 (6), 1427-1444. https://doi.org/10.18016/ksutarimdoga.vi.1720941
-
Tariq, M., Hameed, S., Yasmeen, T., & Zahid, M. (2014). Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30, 719-725. https://doi.org/10.1007/s11274-013-1488-9
-
Tiedje, J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Biology of Anaerobic Microorganisms (ed. Sehnder, A.J.B.). Wiley, New York, pp. 179-244.
-
Tjamos, E.C., Tjamos, S.E., & Antoniou, P.P. (2010). Biological management of plant diseases: Highlights on research and application. Journal of Plant Pathology, 92, S17-S21. https://www.jstor.org/stable/41998883
-
Uysal A. (2019). Doğu Akdeniz Bölgesi’nde turunçgillerde antraknoz etmeni Colletotrichum türlerinin morfolojik, patojenik, moleküler karakterizasyonu ve fungisit duyarlılıkları. Doktora Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimler Enstitüsü, 141 sayfa.
-
Uysal, A., Kurt, Ş., Soylu E.M., Kara M., & Soylu S., (2018). Evaluation of the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for identification of some plant fungal pathogenic species. International Agricultural Science Congress, 09-12 May, Van/Turkey.
-
van Loon, L.C., & Bakker, P.A.H.M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui, Z.A. (Ed.), PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, The Netherlands, pp. 39-66.
-
Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460-468. https://doi.org/10.1007/s003740050024
-
Wang, Y., Zeng, Q., & Zhang, Z. (2010). Antagonistic bioactivity of an endophytic bacterium H6. African Journal of Biotechnology, 9 (37), 6140-6145. https://doi.org/10.5897/AJB10.258
-
Wei, D., Zhu, D., Zhang, Y., Yang, Z., Wu, X., Shang, J., Yang, W., & Chang, X. (2023). Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of Fusarium root rot and promotion of soybean growth. Biological Control, 186, 105349. https://doi.org/10.1016/j.biocontrol.2023.105349
-
Wei, G., Kloepper, J.W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant-growth promoting rhizobacteria under field conditions. Phytopathology, 86, 221-224.
-
Welbaum, G., Sturz, A.V., Dong, Z., & Nowak, J. (2004). Fertilizing soil microorganisms to improve productivity of agroecosystems. Critical Reviews in Plant Sciences, 23, 175-193. https://doi.org/10.1080/07352680490433295
-
Weller, D.M. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
-
Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20, 248-254. https://doi.org/10.1016/j.copbio.2009.02.012
-
Whitman, W.B., Coleman, D.C., & Wiebe, W.J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 95, 6578-6583. https://doi.org/10.1073/pnas.95.12.6578
-
Xu, W., Xu, L., Deng, X., Goodwin, P.H., Xia, M., Zhang, J., Wang, Q., Sun, R., Pan, Y., Wu, C., & Yang, L. (2021). Biological control of take-all and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens, 10 (7), 903. https://doi.org/10.3390/pathogens10070903
Orman topraklarından izole edilen Pseudomonas türlerinin izolasyonu tanılanması, antagonistik ve bitki gelişimini teşvik edici mekanizmalarının karakterizasyonu
Yıl 2025,
Sayı: Advanced Online Publication, 840 - 853
Yusuf Gümüş
,
Soner Soylu
,
Aysun Uysal
,
Merve Oğuz
,
Emine Mine Soylu
,
Şener Kurt
Öz
Bu çalışmada, Hatay ilinin iki farklı ormanlık alandan elde edilen toprak örneklerinden izole edilen Pseudomonas türü bakterilerin, bitki gelişimini teşvik edici özellikleri ve biyolojik mücadele potansiyelleri detaylı olarak değerlendirilmiştir. İzolasyon sonrası elde edilen 16 farklı Pseudomonas izolatı, hipersensitif reaksiyon (HR) ve yumuşak çürüklük testleriyle patojenisite yönünden taranmış, güvenli bulunan izolatlar MALDI-TOF MS yöntemiyle tür düzeyinde tanımlanmıştır. Bu izolatlar, siderofor ve proteaz üretimi, fosfat çözme kabiliyeti, hidrojen siyanür (HCN) ve amonyak (NH₃) üretimi gibi bitki büyümesini teşvik eden ve patojenleri baskılayan mekanizmalar açısından laboratuvar koşullarında test edilmiştir. P. putida FS12 yüksek düzeyde siderofor üretimiyle, P. extremorientalis FS3 belirgin fosfat çözme kapasitesiyle, P. mandelii FS13 ise güçlü NH₃ ve HCN üretimiyle öne çıkmıştır. P. brassicacearum FS16 ise birden fazla mekanizmayı aynı anda göstererek çok yönlü bir biyokontrol potansiyeli sergilemiştir. Elde edilen sonuçlar, orman topraklarının mikrobiyal çeşitliliğinin tarımsal açıdan değerli biyolojik ajanlar için önemli bir kaynak oluşturduğunu göstermektedir. Çalışmada belirlenen Pseudomonas izolatları, biyogübre ya da biyopestisit formülasyonlarında değerlendirilmek üzere aday olarak önerilmekte olup, sürdürülebilir tarım uygulamalarında çevre dostu alternatifler sunma potansiyeline sahiptir.
Kaynakça
-
Ahmad Khan, B., Nadeem, M.A., Nawaz, H., Amin, M.M., Abbasi, G.H., Nadeem, M., Ali, M., Ameen, M., Javaid, M. M., Maqbool, R., Ikram, M., & Ayub, M.A. (2023). Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_5
-
Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. International Journal of Molecular Sciences, 21 (7), 2590. https://doi.org/10.3390/ijms21072590
-
Aktan, Z.C., & Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSU Tarım ve Doğa Dergisi, 23, 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802
-
Bakker, A.W., & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19, 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
-
Bashan, Y., & Holguin, G. (1998). Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology & Biochemistry 30, 1225-1228. https://doi.org/10.1016/S0038-0717(97)00187-9
-
Berg, G. (2009). Plantemicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84, 11-18. https://doi.org/10.1007/s00253-009-2092-7
-
Cappuccino J.C., & Sherman N. (1992). “Negative staining,” in Microbiology: A Laboratory Manual. 3rd Edn. ed. Sherman J. C. C. A. N. (Redwood City: Benjamin/Cummings; ), 125–179.
-
Cartieaux, F., Thibaud, M.C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Gerbaud, A., Robaglia, C., Somerville, S., & Nussaume, L. (2003). Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. The Plant Journal, 36, 177-188. https://doi.org/10.1046/j.1365-313X.2003.01867.x
-
Collinge, D.B., Jensen, D.F., Rabiey, M., Sarrocco, S., Shaw, M.W., & Shaw, R.H. (2022) Biological control of plant diseases – What has been achieved and what is the direction?. Plant Pathology, 71, 1024-1047. https://doi.org/10.1111/ppa.13555
-
Curtis, T.P., Sloan, W.T., & Scannell, J.W. (2002). Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the USA, 99, 10494-10499. https://doi.org/10.1073/pnas.142680199
-
Duman, K., & Soylu, S. (2019). Characterization of plant growth-promoting traits and antagonistic potentials of endophytic bacteria from bean plants against Pseudomonas syringae pv. phaseolicola. Bitki Koruma Bülteni, 59, 59-69. https://doi.org/10.16955/bitkorb.597214
-
Dutta J., Handique P.J., & Thakur, D. (2015). Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 6, 1252. https://doi.org/10.3389/fmicb.2015.01252
-
Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15 (10), 579-590. https://doi.org/10.1038/nrmicro.2017.87
-
Fravel, D.R. (1988). Role of antibiosis in the biocontrol of plant disease. Annual Review of Phytopathology, 26, 75-91. https://doi.org/10.1146/annurev.py.26.090188.000451
-
Gardener, B.B.M., Gutierrez, L.J., Joshi, R., Edema, R., & Lutton, E. (2005). Distribution and biocontrol potential of phlD (+) Pseudomonads in corn and soybean fields. Phytopathology, 95, 715-724. https://doi.org/10.1094/PHYTO-95-0715
-
Gümüş, Y., & Soylu, E.M. (2024). Endofit ve epifit bakteri izolatlarının bazı turunçgil fungal hastalık etmenlerine karşı in vitro biyokontrol etkinlik ve etki mekanizmalarının belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 27 (6), 1376-1391. https://doi.org/10.18016/ksutarimdoga.vi.1459337
-
Haque, M.M., Mosharaf, M.K., Khatun, M., Haque, M.A., Biswas, M.S., Islam, M.S., Islam, M.M., Shozib, H.B., Miah, M.M.U., Molla, A.H., & Siddiquee, M.A. (2020). Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Frontiers in Microbiology, 11, 542053. https://doi.org/10.3389/fmicb.2020.542053
-
Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Nilsson, R.H., Hallam, S.J., & Mohn, W.W. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME Journal, 6 (12), 2199-2218. https://doi.org/10.1038/ismej.2012.84
-
Horner-Devine, M.C., Leibold, M.A., Smith, V.H., & Bohannan, B.J.M. (2003). Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters, 6, 613-622. https://doi.org/10.1046/j.1461-0248.2003.00472.x
-
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Hogberg, M.N., Nyberg, G., Ottosson-Löfvenius, M., & Read, D.J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792. https://doi.org/10.1038/35081058
-
Janssen, P.H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72 (3), 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
-
Jiménez-Gómez, A., Saati-Santamaría, Z., Kostovcik, M., Rivas, R., Velázquez, E., Mateos, P.F., Menéndez, E., & García-Fraile, P. (2020). Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. Crops. Agronomy, 10 (11), 1788. https://doi.org/10.3390/agronomy10111788
-
Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M., & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. https://doi.org/10.17660/ActaHortic.2020.1290.25
-
Khojasteh, M., Darzi Ramandi, H., Taghavi, S.M., Taheri, A., Rahmanzadeh, A., Chen, G., Foolad, M.R., & Osdaghi, E. (2024). Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. Plant Cell Reports, 43, 184 https://doi.org/10.1007/s00299-024-03268-x
-
Kowalchuk, G.A., & Stephen, J.R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55, 485-529. https://doi.org/10.1146/annurev.micro.55.1.485
-
Kumar, P., Dubey, R.C., & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167, 493-499. https://doi.org/10.1016/j.micres.2012.05.002
-
Leake, J.R., Johnson, D., Donnelly, D.P., Muckle, G.E., Boddy, L., & Read, D.J. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82, 1016-1045. https://doi.org/10.1139/b04-060
-
Lelliot, R.A., & Stead, D.E. (1987). Methods for the Diagnosis of Bacterial Diseases of Plants. (T.F. Preece, Editor). In: Methods in Plant Pathology, Vol 2, Blackwell Scientific Publications. pp. 176-177, Oxford.
-
Leong, J. (1986). Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology, 24, 187-209. https://doi.org/10.1146/annurev.py.24.090186.001155
-
López-Hernández, J., García-Cárdenas, E., López-Bucio, J.S., Jiménez-Vázquez, K.R., de la Cruz, H.R., Ferrera-Rodríguez, O., Santos-Rodríguez, D.L., Ortiz-Castro, R., & López-Bucio, J. (2023). Screening of phosphate solubilization identifies six Pseudomonas species with contrasting phytostimulation properties in Arabidopsis seedlings. Microbial Ecology, 86 (1), 431-445. https://doi.org/10.1007/s00248-022-02080-y
-
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-566. https://doi.org/10.1146/annurev.micro.62.081307.162918
-
Marques, A.P., Pires, C., Moreira, H., Rangel, A.O., & Castro, P.M. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42, 1229-1235. https://doi.org/10.1016/j.soilbio.2010.04.014
-
Nega, A. (2014). Review on Concepts in Biological Control of Plant Pathogens. Journal of Biology, Agriculture and Healthcare, 4 (27), 33-54.
-
Pandit, M.A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C.D., Mishra, V., & Kaur, J. (2022). Major biological control strategies for plant pathogens. Pathogens, 11 (2), 273. https://doi.org/10.3390/pathogens11020273
-
Paramasivan, M., Ramjegathesh, R., Rajendran, L., Thangam, A., Indiragandhi, P., Ravichandran, V., Johnsonc, I., Karthikayan, G., & Karthikeyan, M. (2025). Biocontrol and growth promotion of groundnut by Pseudomonas putida GN1 against soilborne pathogens. Archives of Phytopathology and Plant Protection, 58 (5), 282-301. https://doi.org/10.1080/03235408.2025.2476217
-
Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J.M., De Vos, P., & Höfte, M. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 103, 1007-1020. https://doi.org/10.1111/j.1365-2672.2007.03345.x
-
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2008). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341-361. https://doi.org/10.1007/s11104-008-9568-6
-
Rahmanzadeh, A., Khahani, B., Taghavi, S. M., Khojasteh, M., & Osdaghi, E. (2022). Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics, 23 (1), 680. https://doi.org/10.1186/s12864-022-08914-w
-
Rillig, M.C., & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
-
Rubio-Santiago, J., Hernández-Morales, A., Rolón-Cárdenas, G.A., Arvizu-Gómez, J.L., Soria-Guerra, R.E., Carranza-Álvarez, C., Rubio-Salazar, J.E., Rosales-Loredo, S., Pacheco-Aguilar, J.R., Macías-Pérez, J.R., Aldaba-Muruato, L.R., & Vázquez-Martínez, J. (2023). Characterization of endophytic bacteria isolated from Typha latifolia and their effect in plants exposed to either Pb or Cd. Plants, 12 (3), 498. https://doi.org/10.3390/plants12030498
-
Santoyo, G., Moreno-Hagelsieb, G., Carmen Orozco-Mosqueda, M., & Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. https://doi.org/10.1016/j.micres.2015.11.008
-
Saranraj, P., Sivasakthivelan, P., & Sakthi, S.S. (2013). Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore District, Tamil Nadu, India. African Journal of Basic and Applied Sciences, 5 (2), 95-101. https://doi.org/10.5829/idosi.ajbas.2013.5.2.2934
-
Sauvêtre, A., & Schröder, P. (2015). Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science, 6, 83. https://doi.org/10.3389/fpls.2015.00083
-
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3, 430-439. https://doi.org/10.1038/s41559-018-0793-y
-
Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for detection and determination of siderophores. Analytical Biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
-
Sharma, P., Verma, P.P., & Kaur, M. (2017). Comparative effect of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida on the growth of replanted apple. Journal of Pure and Applied Microbiology, 11 (2), 1141-1147. https://doi.org/10.22207/JPAM.11.2.60
-
Singh, R.P., Jha, P.N., & Mishra, S. (2021). Isolation and characterization of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on plant growth and root colonization. Frontiers in Microbiology, 12, 700082. https://doi.org/10.3389/fmicb.2021.700082
-
Smith, S.E., & Read, D.J. (1997). Mycorrhizal Symbiosis, 2nd edn. Academic Press, London, UK.
-
Soylu, S., Soylu, E.M., Kurt, Ş., & Ekici, Ö.K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8, 43-48.
-
Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. KSU Journal of Agriculture and Nature, 23, 7-18. https://doi.org/10.18016/ksutarimdoga.vi.601936
-
Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312. https://doi.org/10.18016/10.13080/z-a.2021.108.039
-
Sprent, J.I. (2001). Nodulation in Legumes. Royal Bot. Gardens, Kew, UK.
-
Sturz, A.V., Christie, B.R., & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19, 1-30. https://doi.org/10.1080/07352680091139169
-
Şahin, N. (2023). Ekstrem şartlardan izole edilen Pseudomonas extremorientalis’ın fosfor çözme potansiyelinin araştırılması ve bu uygulamanın soğan bitkisinin fosfor alımı üzerine etkisi (Yüksek lisans tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü).
-
Tangül, G.A., & Soylu, S. (2025). Bamya (Abelmoschus esculentus L.) bitkilerinin tohum ve toprak kökenli fungal hastalık etmenlerine karşı antagonist bakterilerin in vitro biyokontrol potansiyellerinin belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 28 (6), 1427-1444. https://doi.org/10.18016/ksutarimdoga.vi.1720941
-
Tariq, M., Hameed, S., Yasmeen, T., & Zahid, M. (2014). Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30, 719-725. https://doi.org/10.1007/s11274-013-1488-9
-
Tiedje, J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Biology of Anaerobic Microorganisms (ed. Sehnder, A.J.B.). Wiley, New York, pp. 179-244.
-
Tjamos, E.C., Tjamos, S.E., & Antoniou, P.P. (2010). Biological management of plant diseases: Highlights on research and application. Journal of Plant Pathology, 92, S17-S21. https://www.jstor.org/stable/41998883
-
Uysal A. (2019). Doğu Akdeniz Bölgesi’nde turunçgillerde antraknoz etmeni Colletotrichum türlerinin morfolojik, patojenik, moleküler karakterizasyonu ve fungisit duyarlılıkları. Doktora Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimler Enstitüsü, 141 sayfa.
-
Uysal, A., Kurt, Ş., Soylu E.M., Kara M., & Soylu S., (2018). Evaluation of the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for identification of some plant fungal pathogenic species. International Agricultural Science Congress, 09-12 May, Van/Turkey.
-
van Loon, L.C., & Bakker, P.A.H.M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui, Z.A. (Ed.), PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, The Netherlands, pp. 39-66.
-
Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460-468. https://doi.org/10.1007/s003740050024
-
Wang, Y., Zeng, Q., & Zhang, Z. (2010). Antagonistic bioactivity of an endophytic bacterium H6. African Journal of Biotechnology, 9 (37), 6140-6145. https://doi.org/10.5897/AJB10.258
-
Wei, D., Zhu, D., Zhang, Y., Yang, Z., Wu, X., Shang, J., Yang, W., & Chang, X. (2023). Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of Fusarium root rot and promotion of soybean growth. Biological Control, 186, 105349. https://doi.org/10.1016/j.biocontrol.2023.105349
-
Wei, G., Kloepper, J.W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant-growth promoting rhizobacteria under field conditions. Phytopathology, 86, 221-224.
-
Welbaum, G., Sturz, A.V., Dong, Z., & Nowak, J. (2004). Fertilizing soil microorganisms to improve productivity of agroecosystems. Critical Reviews in Plant Sciences, 23, 175-193. https://doi.org/10.1080/07352680490433295
-
Weller, D.M. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
-
Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20, 248-254. https://doi.org/10.1016/j.copbio.2009.02.012
-
Whitman, W.B., Coleman, D.C., & Wiebe, W.J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 95, 6578-6583. https://doi.org/10.1073/pnas.95.12.6578
-
Xu, W., Xu, L., Deng, X., Goodwin, P.H., Xia, M., Zhang, J., Wang, Q., Sun, R., Pan, Y., Wu, C., & Yang, L. (2021). Biological control of take-all and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens, 10 (7), 903. https://doi.org/10.3390/pathogens10070903