Araştırma Makalesi
BibTex RIS Kaynak Göster

Filaman Sarım CETP Kompozit Boruların Mekanik Özelliklerinin ve Hasar Gelişiminin Halka Çekme Testi ile İncelenmesi

Yıl 2024, , 93 - 104, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.34

Öz

Filaman sarım yöntemi ile üretilen kompozit borular; hafiflikleri, korozyon dirençleri ve yüksek mukavemetlerinden dolayı birçok mühendislik alanlarında kullanılmaktadır. Özellikle doğalgaz ve petrol boru hatlarında basınç altında çalışan kompozit borular kullanılacağı alanda taşıyabileceği yükleri karşılayabilmesi için özel tasarımlar yapılmaktadır. Filaman sarım üretim yöntemi ile elyaf türü, elyaf sarım açısı ve tabaka sayısı değiştirilerek ihtiyaca göre farklı özelliklerde ve mukavemetlerde kompozit borular üretilebilmektedir. Değişken parametreler ışığında üretilen her borunun mekanik özelliklerinin belirlenmesi gerekmektedir. İç basınç altında çalışan kompozit boruların mekanik özelliklerinin belirlenmesinde kullanılan yöntemlerden bir tanesi de halka çekme testidir. Bu çalışmada Filaman sarım yöntemi ile ±55° elyaf konfigürasyonu ile 72 mm iç çapında ve 1 m boyunda cam elyaf takviyeli plastik (CETP) borular üretilmiştir. Üretilen borulardan ASTM D2290 standardına göre 30 mm genişliğinde 20 mm daraltılmış bölgelere sahip halka çekme test numuneleri hazırlanmıştır. Deneyler Instron 8801 test cihazında yapılmış ve veriler kaydedilmiştir. Kompozit boruların halka çekme deneyleri sonrasında elde edilen veriler işlenmiş ve grafik haline dönüştürülerek yorumlanmıştır. Deney sonrası hasar bölgeleri yüksek çözünürlüklü olarak fotoğraflanarak ayrıntılı makro ve mikro (SEM) hasar analizi yapılarak oluşan hasar modları belirlenmiştir.

Kaynakça

  • S. Morkavuk, U. Köklü, K. Aslantaş, An experimental investigation on the influence of different surface curvatures in drilling machinability of carbon fiber reinforced plastic, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 236 (2022), 10953-10968. doi:10.1177/09544062221110466
  • K. Giasin, M. Atif, Y. Ma et al., Machining GLARE fibre metal laminates: a comparative study on drilling effect betwee n conventional and ultrasonic-assisted drilling, The International Journal of Advanced Manufacturing Technology. 123, (2022), 3657-3672. doi:10.1007/s00170-022-10297-x
  • U. Köklü, O. Demir, A. Avcı et al., Drilling performance of functionally graded composite: Comparison with glass and carbon/epoxy composites, Journal of Mechanical Science and Technology. 31 (2017) 4703-4709. doi:10.1007/s12206-017-0916-4
  • M. Taşyürek, N. Tarakçioğlu, Damage behavior of filament winding pipes modified with carbon nanotubes under internal pressure, Journal of Polytechnic-Politeknik Dergisi. 18 (2015), 211-217. doi:10.2339/2015.18.4 211-217
  • E. Madenci, Y.O. Özkılıç, L. Gemi, Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations, Composite Structures. 254 (2020), 112806. doi:10.1016/j.compstruct.2020.112806
  • Ş. Yazman, The effects of back-up on drilling machinability of filament wound GFRP composite pipes: Mechanical characterization and drilling tests, Journal of Manufacturing Processes. 68 (2021), 1535-1552. doi:10.1016/j.jmapro.2021.06.054
  • E. Madenci, “Fonksiyonel Derecelendirilmiş Malzeme Plakların Statik Analizinde Mikro-Mekanik Modellerin Katkısı,” Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 5 (2023), 23-37. doi:10.47112/neufmbd.2023.7
  • M. A. Doğan, Ş. Yazman, L. Gemi et al., A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions, Composite Structures. 297 (2022), 115913. doi:10.1016/j.compstruct.2022.115913
  • U. Köklü, M. Mayda, S. Morkavuk et al., Optimization and prediction of thrust force, vibration and delamination in drilling of functionally graded composite using Taguchi, ANOVA and ANN analysis, Materials Research Express. 6 (2019), 085335. doi:10.1088/2053-1591/ab2617
  • E. Uslu, M. Gavgali, M. O. Erdal et al., Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study, Materials Today Communications. 26 (2021), 101939. doi:10.1016/j.mtcomm.2020.101939
  • M. O. Erdal, Ş. Yazman, L. Gemi et al., The effect of nonwoven electrospun PAN nanofiber mat on mechanical and thermal properties of epoxy composites, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 22 (2018), 528-535. doi:10.19113/sdufbed.81545
  • M. Uyaner, and A. Yar, Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 1 (2019), 10-19.
  • D. Renjadi Neelappa, S. Keerikadu, and L. K. S. Ramamurthy, Fabrication and characterization of bio composite fiber boards from areca leaf sheaths, Journal of Materials and Manufacturing. 2 (2023), 44-53. doi:10.5281/zenodo.8023070
  • L. Gemi, Ş. Yazman, M. Uludağ et al., The effect of 0.5 wt% additions of carbon nanotubes and ceramic nanoparticles on tensile properties of epoxy-matrix composites: a comparative study, Mater Sci Nanotechnol. 1(2) (2017, 15-22. doi:10.35841/nanotechnology.1.2.15-22
  • S. Khammassi, M. Tarfaoui, Y. Qureshi et al., Mechanical properties of graphene nanoplatelets reinforced epikote 828 under dynamic compression, Mechanics of Materials. 158 (2021), 103873. doi:10.1016/j.mechmat.2021.103873
  • H. Sepetcioglu, N. Tarakcioglu, and R. Rafiee, Experimental investigation of graphene nanoplatelets effect on the fatigue behavior of basalt/epoxy composite pressure vessels, Thin-Walled Structures. 171 (2022), 108672. doi:10.1016/j.tws.2021.108672
  • İ. Akin, E. Zor, H. Bingöl, GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 38-52. doi:10.47112/neufmbd.2023.8
  • Ş. Bulbul, E. Ayhan, H. Gökmeşe, Termik Santral Atığı Olan Kömür Külünün SBR Matrisli Bileşiklere İlave Edilmesinin Mekanik Özelliklere Etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 135-146. doi:10.47112/neufmbd.2023.14
  • D.S. Gemi, Ö.S. Şahin, L. Gemi, Experimental investigation of axial compression behavior after low velocity impact of glass fiber reinforced filament wound pipes with different diameter, Composite Structures. 280 (2022), 114929. doi:10.1016/j.compstruct.2021.114929
  • L. Gemi, M. A. Köroğlu, A. Ashour, Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes, Composite Structures. 187 (2018), 157-168. doi:10.1016/j.compstruct.2017.12.049
  • Q. Ma, M. R. M. Rejab, M. Azeem et al., Axial and radial crushing behaviour of thin-walled carbon fiber-reinforced polymer tubes fabricated by the real-time winding angle measurement system, Forces in Mechanics. 10 (2023), 100170. doi:10.1016/j.finmec.2023.100170
  • L. Gemi, Ö.S. Şahin, A. Akdemir, Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress, Composites Part B: Engineering. 119 (2017), 196-205. doi:10.1016/j.compositesb.2017.03.051
  • L. Gemi, N. Tarakçioğlu, A. Akdemir, Ö.S. Şahin, Progressive fatigue failure behavior of glass/epoxy (±75)2 filament-wound pipes under pure internal pressure, Materials & Design. 30 (2009), 4293-4298. doi:10.1016/j.matdes.2009.04.025
  • N. Tarakçioğlu, L. Gemi, A. Yapici, Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure, Composites Science and Technology. 65 (2005), 703-708. doi:10.1016/j.compscitech.2004.10.002
  • H. Sepetcioglu, Experimental study on the effect of graphene nanoplatelets on the low-velocity impact response of prestressed filament wound basalt-based composite pressure vessels, Polymer Composites. 42 (2021), 5527-5540. doi:10.1002/pc.26243
  • S. Morkavuk, K. Aslantaş, L. Gemi et al., The influence of drilling-induced damages and hole quality on hoop tensile and fatigue behavior of CFRP tubes, Composites Part A: Applied Science and Manufacturing. 179 (2024), 108005. doi:10.1016/j.compositesa.2024.108005
  • L. Gemi, Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study, Composites Part B: Engineering. 153 (2018), 217-232. doi:10.1016/j.compositesb.2018.07.056
  • L. Gemi, M. Kara, A. Avci, Low velocity impact response of prestressed functionally graded hybrid pipes, Composites Part B: Engineering. 106 (2016), 154-163. doi:10.1016/j.compositesb.2016.09.025
  • M. Kara, M. Uyaner, A. Avci, Repairing impact damaged fiber reinforced composite pipes by external wrapping with composite patches, Composite Structures. 123 (2015), 1-8. doi:10.1016/j.compstruct.2014.12.017
  • M. Kara, M. Uyaner, A. Avci et al., Effect of non-penetrating impact damages of pre-stressed GRP tubes at low velocities on the burst strength, Composites Part B: Engineering. 60 (2014), 507-514. doi:10.1016/j.compositesb.2014.01.003
  • M. Azeem, H. H. Ya, M. Azad Alam et al., Influence of winding angles on hoop stress in composite pressure vessels: Finite element analysis, Results in Engineering. 21 (2024), 101667. doi:10.1016/j.rineng.2023.101667
  • D. S. Gemi, Ö. S. Şahin, and L. Gemi, Experimental investigation of the effect of diameter upon low velocity impact response of glass fiber reinforced composite pipes, Composite Structures. 275 (2021), 114428. doi:10.1016/j.compstruct.2021.114428
  • L. Gemi, M. Kayrıcı, M. Uludağ et al., Experimental and statistical analysis of low velocity impact response of filament wound composite pipes, Composites Part B: Engineering. 149 (2018), 38-48. doi:10.1016/j.compositesb.2018.05.006
  • A. Maziz, M. Tarfaoui, L. Gemi et al., A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact, Composite Structures. 276 (2021), 114520. doi:10.1016/j.compstruct.2021.114520
  • A. Maziz, M. Tarfaoui, S. Rechak et al., Finite Element Analysis of Impact-Induced Damage in Pressurized Hybrid Composites Pipes, International Journal of Applied Mechanics. 13 (2021), 2150074. doi:10.1142/s1758825121500745
  • M. Azeem, H. H. Ya, M. A. Alam et al., Impact response of filament-wound structure with polymeric liner: Experimental and numerical investigation (Part-A), Results in Engineering. 21 (2024), 101730. doi:10.1016/j.rineng.2023.101730
  • M. Azeem, H. H. Ya, M. A. Alam et al., Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review, Journal of Energy Storage. 49 (2022), 103468. doi:10.1016/j.est.2021.103468
  • R. Rafiee, A. Salehi, Estimating the burst pressure of a filament wound composite pressure vessel using two-scale and multi-scale analyses, Mechanics of Advanced Materials and Structures. 30 (2023), 2668-2683. doi:10.1080/15376494.2022.2062077
  • R. Rafiee, A. Salehi, A novel recursive multi-scale modeling for predicting the burst pressure of filament wound composite pressure vessels, Applied Physics A, 128 (2022), 388. doi:10.1007/s00339-022-05505-0
  • A. Onder, O. Sayman, T. Dogan et al., Burst failure load of composite pressure vessels, Composite Structures. 89 (2009), 159-166. doi:10.1016/j.compstruct.2008.06.021
  • M. Taşyürek, N. Tarakçioğlu, Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes, Composites Part B: Engineering. 124 (2017), 23-30. doi:10.1016/j.compositesb.2017.05.050
  • M. Taşyürek, M. Kara, Low-velocity impact response of pre-stressed glass fiber/nanotube filled epoxy composite tubes, Journal of Composite Materials. 55 (2021), 915-926. doi:10.1177/0021998320961552
  • F.M.L. Rekbi, Ö. Özbek, L. Gemi et al., Impact response of filament wound composite structures under various velocity regimes: A state-of-art review, Functional Composites and Structures. (2024), In press
  • H. Benyahia, M. Tarfaoui, A. El Moumen et al., Prediction of notched strength for cylindrical composites pipes under tensile loading conditions, Composites Part B: Engineering. 150 (2018), 104-114. doi:10.1016/j.compositesb.2018.05.051
  • M. Tarfaoui, P.B. Gning, L. Hamitouche, Dynamic response and damage modeling of glass/epoxy tubular structures: Numerical investigation, Composites Part A: Applied Science and Manufacturing. 39 (2008), 1-12. doi:10.1016/j.compositesa.2007.10.001
  • M.T. Demirci, N. Tarakçıoğlu, A. Avcı et al., Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method, Composites Part B: Engineering. 119 (2017), 114-124. doi:10.1016/j.compositesb.2017.03.045
  • F. Saghir, S. Gohari, F. Mozafari et al., Mechanical characterization of particulated FRP composite pipes: A comprehensive experimental study, Polymer Testing. 93 (2021), 107001. doi:10.1016/j.polymertesting.2020.107001
  • M. Stamenović, S. Putić, S. Drmanić et al., The influence of service solutions on the longitudinal and circumferential tensile properties of glass-polyester composite pipes, Materials Science. 47 (2011), 61-69. doi:10.1007/s11003-011-9368-7
  • W. Toh, L.B. Tan, K.M. Tse et al., Material characterization of filament-wound composite pipes, Composite Structures. 206 (2018), 474-483. doi:10.1016/j.compstruct.2018.08.049
  • E.N. Buarque, and J.R.M. d’Almeida, The effect of cylindrical defects on the tensile strength of glass fiber/vinyl-ester matrix reinforced composite pipes, Composite Structures. 79 (2007), 270-279. doi:10.1016/j.compstruct.2006.01.011
  • Ö. Özbek, Ö.Y. Bozkurt, Hoop tensile and compression behavior of glass-carbon intraply hybrid fiber reinforced filament wound composite pipes, Materials Testing. 61 (2019), 763-769. doi:10.3139/120.111395
  • C. Kaynak, E. Salim Erdiller, L. Parnas et al., Use of split-disk tests for the process parameters of filament wound epoxy composite tubes, Polymer Testing. 24 (2005), 648-655. doi:10.1016/j.polymertesting.2005.03.012
  • L. Gemi, U. Köklü, Ş. Yazman et al., The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests, Composites Part B: Engineering. 186 (2020), 107787. doi:10.1016/j.compositesb.2020.107787
  • L. Gemi, S. Morkavuk, U. Köklü et al., The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality, Composite Structures. 235 (2020), 111737. doi:10.1016/j.compstruct.2019.111737
  • ASTM, D2290-19A, Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe, 2992 (2019). doi:10.1520/D2290-19A

Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test

Yıl 2024, , 93 - 104, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.34

Öz

Composite pipes produced by the filament winding (FW) method are used in many engineering fields due to their lightness, corrosion resistance and high strength. Composite pipes working under pressure, particularly in natural gas and oil pipelines, are specially designed to withstand the loads they will be exposed to in the area where they are used. With the FW production method, composite pipes with different properties and strengths can be produced according to the needs by changing the fiber type, fiber winding angle and number of layers. In the light of varying parameters, it is necessary to determine the mechanical properties of each pipe produced. One of the methods of determining the mechanical properties of composite pipes operating under internal pressure is the ring tensile test. In this study, glass fiber reinforced plastic (GFRP) pipes with an inner diameter of 72 mm and a length of 1 m with ±55° fiber configuration were produced by the FW method. Ring tensile test specimens with 30 mm wide and 20 mm reduced sections were prepared from the produced pipes according to ASTM D2290 standard. Experiments were carried out on an Instron 8801 tester and data were recorded. The data obtained after the ring tensile tests of composite pipes were processed, converted into graphics and interpreted comparatively. After the experiment, the damage areas were photographed at high resolution. Detailed macro and micro (SEM) damage analysis was performed to determine the damage modes.

Kaynakça

  • S. Morkavuk, U. Köklü, K. Aslantaş, An experimental investigation on the influence of different surface curvatures in drilling machinability of carbon fiber reinforced plastic, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 236 (2022), 10953-10968. doi:10.1177/09544062221110466
  • K. Giasin, M. Atif, Y. Ma et al., Machining GLARE fibre metal laminates: a comparative study on drilling effect betwee n conventional and ultrasonic-assisted drilling, The International Journal of Advanced Manufacturing Technology. 123, (2022), 3657-3672. doi:10.1007/s00170-022-10297-x
  • U. Köklü, O. Demir, A. Avcı et al., Drilling performance of functionally graded composite: Comparison with glass and carbon/epoxy composites, Journal of Mechanical Science and Technology. 31 (2017) 4703-4709. doi:10.1007/s12206-017-0916-4
  • M. Taşyürek, N. Tarakçioğlu, Damage behavior of filament winding pipes modified with carbon nanotubes under internal pressure, Journal of Polytechnic-Politeknik Dergisi. 18 (2015), 211-217. doi:10.2339/2015.18.4 211-217
  • E. Madenci, Y.O. Özkılıç, L. Gemi, Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations, Composite Structures. 254 (2020), 112806. doi:10.1016/j.compstruct.2020.112806
  • Ş. Yazman, The effects of back-up on drilling machinability of filament wound GFRP composite pipes: Mechanical characterization and drilling tests, Journal of Manufacturing Processes. 68 (2021), 1535-1552. doi:10.1016/j.jmapro.2021.06.054
  • E. Madenci, “Fonksiyonel Derecelendirilmiş Malzeme Plakların Statik Analizinde Mikro-Mekanik Modellerin Katkısı,” Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 5 (2023), 23-37. doi:10.47112/neufmbd.2023.7
  • M. A. Doğan, Ş. Yazman, L. Gemi et al., A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions, Composite Structures. 297 (2022), 115913. doi:10.1016/j.compstruct.2022.115913
  • U. Köklü, M. Mayda, S. Morkavuk et al., Optimization and prediction of thrust force, vibration and delamination in drilling of functionally graded composite using Taguchi, ANOVA and ANN analysis, Materials Research Express. 6 (2019), 085335. doi:10.1088/2053-1591/ab2617
  • E. Uslu, M. Gavgali, M. O. Erdal et al., Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study, Materials Today Communications. 26 (2021), 101939. doi:10.1016/j.mtcomm.2020.101939
  • M. O. Erdal, Ş. Yazman, L. Gemi et al., The effect of nonwoven electrospun PAN nanofiber mat on mechanical and thermal properties of epoxy composites, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 22 (2018), 528-535. doi:10.19113/sdufbed.81545
  • M. Uyaner, and A. Yar, Nano Elyaf Takviyeli Nanokompozit Üretimi ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 1 (2019), 10-19.
  • D. Renjadi Neelappa, S. Keerikadu, and L. K. S. Ramamurthy, Fabrication and characterization of bio composite fiber boards from areca leaf sheaths, Journal of Materials and Manufacturing. 2 (2023), 44-53. doi:10.5281/zenodo.8023070
  • L. Gemi, Ş. Yazman, M. Uludağ et al., The effect of 0.5 wt% additions of carbon nanotubes and ceramic nanoparticles on tensile properties of epoxy-matrix composites: a comparative study, Mater Sci Nanotechnol. 1(2) (2017, 15-22. doi:10.35841/nanotechnology.1.2.15-22
  • S. Khammassi, M. Tarfaoui, Y. Qureshi et al., Mechanical properties of graphene nanoplatelets reinforced epikote 828 under dynamic compression, Mechanics of Materials. 158 (2021), 103873. doi:10.1016/j.mechmat.2021.103873
  • H. Sepetcioglu, N. Tarakcioglu, and R. Rafiee, Experimental investigation of graphene nanoplatelets effect on the fatigue behavior of basalt/epoxy composite pressure vessels, Thin-Walled Structures. 171 (2022), 108672. doi:10.1016/j.tws.2021.108672
  • İ. Akin, E. Zor, H. Bingöl, GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 38-52. doi:10.47112/neufmbd.2023.8
  • Ş. Bulbul, E. Ayhan, H. Gökmeşe, Termik Santral Atığı Olan Kömür Külünün SBR Matrisli Bileşiklere İlave Edilmesinin Mekanik Özelliklere Etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 135-146. doi:10.47112/neufmbd.2023.14
  • D.S. Gemi, Ö.S. Şahin, L. Gemi, Experimental investigation of axial compression behavior after low velocity impact of glass fiber reinforced filament wound pipes with different diameter, Composite Structures. 280 (2022), 114929. doi:10.1016/j.compstruct.2021.114929
  • L. Gemi, M. A. Köroğlu, A. Ashour, Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes, Composite Structures. 187 (2018), 157-168. doi:10.1016/j.compstruct.2017.12.049
  • Q. Ma, M. R. M. Rejab, M. Azeem et al., Axial and radial crushing behaviour of thin-walled carbon fiber-reinforced polymer tubes fabricated by the real-time winding angle measurement system, Forces in Mechanics. 10 (2023), 100170. doi:10.1016/j.finmec.2023.100170
  • L. Gemi, Ö.S. Şahin, A. Akdemir, Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress, Composites Part B: Engineering. 119 (2017), 196-205. doi:10.1016/j.compositesb.2017.03.051
  • L. Gemi, N. Tarakçioğlu, A. Akdemir, Ö.S. Şahin, Progressive fatigue failure behavior of glass/epoxy (±75)2 filament-wound pipes under pure internal pressure, Materials & Design. 30 (2009), 4293-4298. doi:10.1016/j.matdes.2009.04.025
  • N. Tarakçioğlu, L. Gemi, A. Yapici, Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure, Composites Science and Technology. 65 (2005), 703-708. doi:10.1016/j.compscitech.2004.10.002
  • H. Sepetcioglu, Experimental study on the effect of graphene nanoplatelets on the low-velocity impact response of prestressed filament wound basalt-based composite pressure vessels, Polymer Composites. 42 (2021), 5527-5540. doi:10.1002/pc.26243
  • S. Morkavuk, K. Aslantaş, L. Gemi et al., The influence of drilling-induced damages and hole quality on hoop tensile and fatigue behavior of CFRP tubes, Composites Part A: Applied Science and Manufacturing. 179 (2024), 108005. doi:10.1016/j.compositesa.2024.108005
  • L. Gemi, Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study, Composites Part B: Engineering. 153 (2018), 217-232. doi:10.1016/j.compositesb.2018.07.056
  • L. Gemi, M. Kara, A. Avci, Low velocity impact response of prestressed functionally graded hybrid pipes, Composites Part B: Engineering. 106 (2016), 154-163. doi:10.1016/j.compositesb.2016.09.025
  • M. Kara, M. Uyaner, A. Avci, Repairing impact damaged fiber reinforced composite pipes by external wrapping with composite patches, Composite Structures. 123 (2015), 1-8. doi:10.1016/j.compstruct.2014.12.017
  • M. Kara, M. Uyaner, A. Avci et al., Effect of non-penetrating impact damages of pre-stressed GRP tubes at low velocities on the burst strength, Composites Part B: Engineering. 60 (2014), 507-514. doi:10.1016/j.compositesb.2014.01.003
  • M. Azeem, H. H. Ya, M. Azad Alam et al., Influence of winding angles on hoop stress in composite pressure vessels: Finite element analysis, Results in Engineering. 21 (2024), 101667. doi:10.1016/j.rineng.2023.101667
  • D. S. Gemi, Ö. S. Şahin, and L. Gemi, Experimental investigation of the effect of diameter upon low velocity impact response of glass fiber reinforced composite pipes, Composite Structures. 275 (2021), 114428. doi:10.1016/j.compstruct.2021.114428
  • L. Gemi, M. Kayrıcı, M. Uludağ et al., Experimental and statistical analysis of low velocity impact response of filament wound composite pipes, Composites Part B: Engineering. 149 (2018), 38-48. doi:10.1016/j.compositesb.2018.05.006
  • A. Maziz, M. Tarfaoui, L. Gemi et al., A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact, Composite Structures. 276 (2021), 114520. doi:10.1016/j.compstruct.2021.114520
  • A. Maziz, M. Tarfaoui, S. Rechak et al., Finite Element Analysis of Impact-Induced Damage in Pressurized Hybrid Composites Pipes, International Journal of Applied Mechanics. 13 (2021), 2150074. doi:10.1142/s1758825121500745
  • M. Azeem, H. H. Ya, M. A. Alam et al., Impact response of filament-wound structure with polymeric liner: Experimental and numerical investigation (Part-A), Results in Engineering. 21 (2024), 101730. doi:10.1016/j.rineng.2023.101730
  • M. Azeem, H. H. Ya, M. A. Alam et al., Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review, Journal of Energy Storage. 49 (2022), 103468. doi:10.1016/j.est.2021.103468
  • R. Rafiee, A. Salehi, Estimating the burst pressure of a filament wound composite pressure vessel using two-scale and multi-scale analyses, Mechanics of Advanced Materials and Structures. 30 (2023), 2668-2683. doi:10.1080/15376494.2022.2062077
  • R. Rafiee, A. Salehi, A novel recursive multi-scale modeling for predicting the burst pressure of filament wound composite pressure vessels, Applied Physics A, 128 (2022), 388. doi:10.1007/s00339-022-05505-0
  • A. Onder, O. Sayman, T. Dogan et al., Burst failure load of composite pressure vessels, Composite Structures. 89 (2009), 159-166. doi:10.1016/j.compstruct.2008.06.021
  • M. Taşyürek, N. Tarakçioğlu, Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes, Composites Part B: Engineering. 124 (2017), 23-30. doi:10.1016/j.compositesb.2017.05.050
  • M. Taşyürek, M. Kara, Low-velocity impact response of pre-stressed glass fiber/nanotube filled epoxy composite tubes, Journal of Composite Materials. 55 (2021), 915-926. doi:10.1177/0021998320961552
  • F.M.L. Rekbi, Ö. Özbek, L. Gemi et al., Impact response of filament wound composite structures under various velocity regimes: A state-of-art review, Functional Composites and Structures. (2024), In press
  • H. Benyahia, M. Tarfaoui, A. El Moumen et al., Prediction of notched strength for cylindrical composites pipes under tensile loading conditions, Composites Part B: Engineering. 150 (2018), 104-114. doi:10.1016/j.compositesb.2018.05.051
  • M. Tarfaoui, P.B. Gning, L. Hamitouche, Dynamic response and damage modeling of glass/epoxy tubular structures: Numerical investigation, Composites Part A: Applied Science and Manufacturing. 39 (2008), 1-12. doi:10.1016/j.compositesa.2007.10.001
  • M.T. Demirci, N. Tarakçıoğlu, A. Avcı et al., Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method, Composites Part B: Engineering. 119 (2017), 114-124. doi:10.1016/j.compositesb.2017.03.045
  • F. Saghir, S. Gohari, F. Mozafari et al., Mechanical characterization of particulated FRP composite pipes: A comprehensive experimental study, Polymer Testing. 93 (2021), 107001. doi:10.1016/j.polymertesting.2020.107001
  • M. Stamenović, S. Putić, S. Drmanić et al., The influence of service solutions on the longitudinal and circumferential tensile properties of glass-polyester composite pipes, Materials Science. 47 (2011), 61-69. doi:10.1007/s11003-011-9368-7
  • W. Toh, L.B. Tan, K.M. Tse et al., Material characterization of filament-wound composite pipes, Composite Structures. 206 (2018), 474-483. doi:10.1016/j.compstruct.2018.08.049
  • E.N. Buarque, and J.R.M. d’Almeida, The effect of cylindrical defects on the tensile strength of glass fiber/vinyl-ester matrix reinforced composite pipes, Composite Structures. 79 (2007), 270-279. doi:10.1016/j.compstruct.2006.01.011
  • Ö. Özbek, Ö.Y. Bozkurt, Hoop tensile and compression behavior of glass-carbon intraply hybrid fiber reinforced filament wound composite pipes, Materials Testing. 61 (2019), 763-769. doi:10.3139/120.111395
  • C. Kaynak, E. Salim Erdiller, L. Parnas et al., Use of split-disk tests for the process parameters of filament wound epoxy composite tubes, Polymer Testing. 24 (2005), 648-655. doi:10.1016/j.polymertesting.2005.03.012
  • L. Gemi, U. Köklü, Ş. Yazman et al., The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests, Composites Part B: Engineering. 186 (2020), 107787. doi:10.1016/j.compositesb.2020.107787
  • L. Gemi, S. Morkavuk, U. Köklü et al., The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality, Composite Structures. 235 (2020), 111737. doi:10.1016/j.compstruct.2019.111737
  • ASTM, D2290-19A, Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe, 2992 (2019). doi:10.1520/D2290-19A
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Lokman Gemi 0000-0002-9895-6574

Mohammad Azeem Bu kişi benim 0000-0001-8742-7186

Şakir Yazman 0000-0002-4064-0024

Mehmet Kayrıcı 0000-0001-8553-1166

Onur Gök 0000-0003-1160-1963

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 13 Aralık 2023
Kabul Tarihi 23 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gemi, L., Azeem, M., Yazman, Ş., Kayrıcı, M., vd. (2024). Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(1), 93-104. https://doi.org/10.47112/neufmbd.2024.34
AMA Gemi L, Azeem M, Yazman Ş, Kayrıcı M, Gök O. Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test. NEU Fen Muh Bil Der. Nisan 2024;6(1):93-104. doi:10.47112/neufmbd.2024.34
Chicago Gemi, Lokman, Mohammad Azeem, Şakir Yazman, Mehmet Kayrıcı, ve Onur Gök. “Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, sy. 1 (Nisan 2024): 93-104. https://doi.org/10.47112/neufmbd.2024.34.
EndNote Gemi L, Azeem M, Yazman Ş, Kayrıcı M, Gök O (01 Nisan 2024) Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 1 93–104.
IEEE L. Gemi, M. Azeem, Ş. Yazman, M. Kayrıcı, ve O. Gök, “Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test”, NEU Fen Muh Bil Der, c. 6, sy. 1, ss. 93–104, 2024, doi: 10.47112/neufmbd.2024.34.
ISNAD Gemi, Lokman vd. “Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/1 (Nisan 2024), 93-104. https://doi.org/10.47112/neufmbd.2024.34.
JAMA Gemi L, Azeem M, Yazman Ş, Kayrıcı M, Gök O. Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test. NEU Fen Muh Bil Der. 2024;6:93–104.
MLA Gemi, Lokman vd. “Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 6, sy. 1, 2024, ss. 93-104, doi:10.47112/neufmbd.2024.34.
Vancouver Gemi L, Azeem M, Yazman Ş, Kayrıcı M, Gök O. Investigation of Mechanical Properties and Damage Development of Filament Wound GFRP Composite Pipes by Ring Tensile Test. NEU Fen Muh Bil Der. 2024;6(1):93-104.


32206                   17157           17158