Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT

Yıl 2020, , 688 - 695, 30.01.2020
https://doi.org/10.28948/ngumuh.569239

Öz

Kaynakça

  • [1] JAIN, D., PATHARE, P.B., “Study the Drying Kinetics of Open Sun Drying of Fish”, Journal of Food Engineering, 78(4), 1315-1319, 2007.
  • [2] BAYGAR, T., ERKAN, N., METIN, S., OZDEN, O., VARLIK, C., “Determination of the Shelf-Life of Stuffed Rainbow Trout During Cold Storage”, Turkish Journal of Veterinary and Animal Sciences, 26(3), 577-580, 2002.
  • [3] MOHD ROZAINEE, T., NG, P.S., “Microwave Assisted Hot Air Convective Dehydration of Fish Slice: Drying Characteristics, Energy Aspects and Colour Assessment”, World Engineering Congress 2010-Conference on Advanced Processes and Materials, 41-46. Sarawak, Malaysia, 2010.
  • [4] BROOKS, M.S., ABOU EL-HANA, N.H., GHALY, A.E., “Effects of Tomato Geometries and Air Temperature on the Drying Behaviour of Plum Tomato”, American Journal of Applied Science, 5(10), 1369-1375, 2008.
  • [5] LEWICKI, P.P., “Design of Hot Air Drying for Better Foods”, Trends in Food Science & Technology, 17(4), 153-163, 2006.
  • [6] NAGAYA, K., LI, Y., JIN, Z., FUKUMURO, M., ANDO, Y., AKAISHI, A., “Low-Temperature Desiccant-Based Food Drying System with Airflow and Temperature Control”, Journal of Food Engineering, 75(1), 71-77, 2006.
  • [7] OMODARA, M.Y., OLANIYAN, A.M., “Effects of Pre-treatments and Drying Temperatures on Drying Rate and Quality of African Catfish (Clarias gariepinus)”, Journal of Biology, Agriculture and Healthcare, 2(4), ISSN 2224-3208 (Paper) ISSN 2225-093X (Online), 2012.
  • [8] WORKNEH, T.S., ZINASH, A., WOLDETSADIK, K., “Blanching, Salting and Sun Drying of Different Pumpkin Fruit Slices”, Journal of Food Science and Technology, 51(11), 3114-3123, 2014.
  • [9] HAILE, F., ADMASSU, S., FISSEHA, A., “Effects of Pre-treatments and Drying Methods on Chemical Composition, Microbial and Sensory Quality of Orange-Fleshed Sweet Potato Flour and Porridge”, American Journal of Food Science and Technology, 3(3), 82-88, 2015.
  • [10] ABANO, E.E., SAM-AMOAH, L.K., OWUSU, J., ENGMANN, F.N., “Effects of Ascorbic Acid, Salt, Lemon Juice, and Honey on Drying Kinetics and Sensory Characteristic of Dried Mango”, Croatian Journal of Food Science and Technology, 5(1), 1-10, 2013.
  • [11] AOAC, Official Methods of Analysis (15th ed.), Association of Official Analytical Chemists, Arlington, VA, USA, 1990.
  • [12] DARVISHI, H., AZADBAKHT, M., REZAEIASL, A., FARHANG, A., “Drying Characteristics of Sardine Fish Dried with Microwave Heating”, Journal of the Saudi Society of Agricultural Sciences, 12, 121-127, 2013.
  • [13] CRANK, J., The Mathematics of Diffusion (Oxford Science Publications) (2nd revised ed.) (pp. 414), Clarendon Press, Oxford, United Kingdom, 1979.
  • [14] DOYMAZ, I., DEMIR, H., YILDIRIM, A., “Drying of Quince Slices: Effect of Pretreatments on Drying and Rehydration Characteristics”, Chemical Engineering Communications, 202(10), 1271-1279, 2015.
  • [15] HENDERSON, S.M., PABIS, S., “Grain Drying Theory I. Temperature Effect on Drying Coefficient”, Journal of Agricultural Engineering Research, 6, 169-174, 1961.
  • [16] PAGE, G.E., “Factors Influencing the Maximum Rates of Air-Drying Shelled Corn in Thin Layers”, MSc Thesis, Purdue University, Purdue, USA, 1949.
  • [17] MIDILLI, A., KUCUK, H., YAPAR, Z., “A New Model for Single-Layer Drying”, Drying Technology, 20(7), 1503-1513, 2002.
  • [18] BASLAR, M., KILICLI, M., TOKER, O.S., SAGDIC, O., ARICI, M., “Ultrasonic Vacuum Drying Technique as a Novel Process for Shortening the Drying Period for Beef and Chicken Meats”, Innovative Food Science and Emerging Technologies, 26, 182-190, 2014.
  • [19] KITUU, G.M., SHITANDA, D., KANALI, C.L., MAILUTHA, J.T., NJOROGE, C.K., WAINAINA, J.K., SILAYO, V.K., “Thin Layer Drying Model for Simulating the Drying of Tilapia Fish (Oreochromis niloticus) in a Solar Tunnel Dryer”, Journal of Food Engineering, 98(3), 325-331, 2010.
  • [20] BELLAGHA, S., AMAMI, E., FARHAT, A., KECHAOU, N., “Drying Kinetics and Characteristic Drying Curve of Lightly Salted Sardine (Sardinella aurita)”, Drying Technology, 20(7), 1527-1538, 2002.
  • [21] DUAN, Z.H., ZHANG, M., TANG, J., “Thin Layer Hot-Air Drying of Bighead Carp.”, Fisheries Science, 23(3), 29-32, 2004.

EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT

Yıl 2020, , 688 - 695, 30.01.2020
https://doi.org/10.28948/ngumuh.569239

Öz

Impacts of different
pre-treatment (citric acid, blanching and salt water dipping) and drying circumstances
on Rainbow trout (Oncorhynchus mykiss)
fillet samples at the cabinet laboratory type dryer was analyzed. Drying tests
were carried out at 40, 50 and 60°C, respectively. According to the obtained
conclusions the moisture content was considerably affected by the pre-treatment
type and drying air temperature. When compared the drying times of Rainbow
trout fillet samples, it was observed that blanched>citric acid>salted
³natural. The drying data for the
moisture ratio versus time was fitted to 4 different thin-layer models.
The best fit for the simulated drying models was specified by use of
the highest determination of coefficient value (R2),
the lowest reduced chi-square (χ2) value and the
lowest
root
mean square error (RMSE). The
Midilli et al. model
was found out as the most appropriate model in explicating the drying properties
of
Rainbow
trout
fillets.

Kaynakça

  • [1] JAIN, D., PATHARE, P.B., “Study the Drying Kinetics of Open Sun Drying of Fish”, Journal of Food Engineering, 78(4), 1315-1319, 2007.
  • [2] BAYGAR, T., ERKAN, N., METIN, S., OZDEN, O., VARLIK, C., “Determination of the Shelf-Life of Stuffed Rainbow Trout During Cold Storage”, Turkish Journal of Veterinary and Animal Sciences, 26(3), 577-580, 2002.
  • [3] MOHD ROZAINEE, T., NG, P.S., “Microwave Assisted Hot Air Convective Dehydration of Fish Slice: Drying Characteristics, Energy Aspects and Colour Assessment”, World Engineering Congress 2010-Conference on Advanced Processes and Materials, 41-46. Sarawak, Malaysia, 2010.
  • [4] BROOKS, M.S., ABOU EL-HANA, N.H., GHALY, A.E., “Effects of Tomato Geometries and Air Temperature on the Drying Behaviour of Plum Tomato”, American Journal of Applied Science, 5(10), 1369-1375, 2008.
  • [5] LEWICKI, P.P., “Design of Hot Air Drying for Better Foods”, Trends in Food Science & Technology, 17(4), 153-163, 2006.
  • [6] NAGAYA, K., LI, Y., JIN, Z., FUKUMURO, M., ANDO, Y., AKAISHI, A., “Low-Temperature Desiccant-Based Food Drying System with Airflow and Temperature Control”, Journal of Food Engineering, 75(1), 71-77, 2006.
  • [7] OMODARA, M.Y., OLANIYAN, A.M., “Effects of Pre-treatments and Drying Temperatures on Drying Rate and Quality of African Catfish (Clarias gariepinus)”, Journal of Biology, Agriculture and Healthcare, 2(4), ISSN 2224-3208 (Paper) ISSN 2225-093X (Online), 2012.
  • [8] WORKNEH, T.S., ZINASH, A., WOLDETSADIK, K., “Blanching, Salting and Sun Drying of Different Pumpkin Fruit Slices”, Journal of Food Science and Technology, 51(11), 3114-3123, 2014.
  • [9] HAILE, F., ADMASSU, S., FISSEHA, A., “Effects of Pre-treatments and Drying Methods on Chemical Composition, Microbial and Sensory Quality of Orange-Fleshed Sweet Potato Flour and Porridge”, American Journal of Food Science and Technology, 3(3), 82-88, 2015.
  • [10] ABANO, E.E., SAM-AMOAH, L.K., OWUSU, J., ENGMANN, F.N., “Effects of Ascorbic Acid, Salt, Lemon Juice, and Honey on Drying Kinetics and Sensory Characteristic of Dried Mango”, Croatian Journal of Food Science and Technology, 5(1), 1-10, 2013.
  • [11] AOAC, Official Methods of Analysis (15th ed.), Association of Official Analytical Chemists, Arlington, VA, USA, 1990.
  • [12] DARVISHI, H., AZADBAKHT, M., REZAEIASL, A., FARHANG, A., “Drying Characteristics of Sardine Fish Dried with Microwave Heating”, Journal of the Saudi Society of Agricultural Sciences, 12, 121-127, 2013.
  • [13] CRANK, J., The Mathematics of Diffusion (Oxford Science Publications) (2nd revised ed.) (pp. 414), Clarendon Press, Oxford, United Kingdom, 1979.
  • [14] DOYMAZ, I., DEMIR, H., YILDIRIM, A., “Drying of Quince Slices: Effect of Pretreatments on Drying and Rehydration Characteristics”, Chemical Engineering Communications, 202(10), 1271-1279, 2015.
  • [15] HENDERSON, S.M., PABIS, S., “Grain Drying Theory I. Temperature Effect on Drying Coefficient”, Journal of Agricultural Engineering Research, 6, 169-174, 1961.
  • [16] PAGE, G.E., “Factors Influencing the Maximum Rates of Air-Drying Shelled Corn in Thin Layers”, MSc Thesis, Purdue University, Purdue, USA, 1949.
  • [17] MIDILLI, A., KUCUK, H., YAPAR, Z., “A New Model for Single-Layer Drying”, Drying Technology, 20(7), 1503-1513, 2002.
  • [18] BASLAR, M., KILICLI, M., TOKER, O.S., SAGDIC, O., ARICI, M., “Ultrasonic Vacuum Drying Technique as a Novel Process for Shortening the Drying Period for Beef and Chicken Meats”, Innovative Food Science and Emerging Technologies, 26, 182-190, 2014.
  • [19] KITUU, G.M., SHITANDA, D., KANALI, C.L., MAILUTHA, J.T., NJOROGE, C.K., WAINAINA, J.K., SILAYO, V.K., “Thin Layer Drying Model for Simulating the Drying of Tilapia Fish (Oreochromis niloticus) in a Solar Tunnel Dryer”, Journal of Food Engineering, 98(3), 325-331, 2010.
  • [20] BELLAGHA, S., AMAMI, E., FARHAT, A., KECHAOU, N., “Drying Kinetics and Characteristic Drying Curve of Lightly Salted Sardine (Sardinella aurita)”, Drying Technology, 20(7), 1527-1538, 2002.
  • [21] DUAN, Z.H., ZHANG, M., TANG, J., “Thin Layer Hot-Air Drying of Bighead Carp.”, Fisheries Science, 23(3), 29-32, 2004.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Diğer
Yazarlar

Osman İsmail 0000-0002-7814-6013

Özlem Gökçe Kocabay 0000-0003-4352-3453

Yayımlanma Tarihi 30 Ocak 2020
Gönderilme Tarihi 23 Mayıs 2019
Kabul Tarihi 23 Eylül 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İsmail, O., & Gökçe Kocabay, Ö. (2020). EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 688-695. https://doi.org/10.28948/ngumuh.569239
AMA İsmail O, Gökçe Kocabay Ö. EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT. NÖHÜ Müh. Bilim. Derg. Ocak 2020;9(1):688-695. doi:10.28948/ngumuh.569239
Chicago İsmail, Osman, ve Özlem Gökçe Kocabay. “EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 1 (Ocak 2020): 688-95. https://doi.org/10.28948/ngumuh.569239.
EndNote İsmail O, Gökçe Kocabay Ö (01 Ocak 2020) EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 688–695.
IEEE O. İsmail ve Ö. Gökçe Kocabay, “EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 1, ss. 688–695, 2020, doi: 10.28948/ngumuh.569239.
ISNAD İsmail, Osman - Gökçe Kocabay, Özlem. “EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (Ocak 2020), 688-695. https://doi.org/10.28948/ngumuh.569239.
JAMA İsmail O, Gökçe Kocabay Ö. EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT. NÖHÜ Müh. Bilim. Derg. 2020;9:688–695.
MLA İsmail, Osman ve Özlem Gökçe Kocabay. “EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 1, 2020, ss. 688-95, doi:10.28948/ngumuh.569239.
Vancouver İsmail O, Gökçe Kocabay Ö. EFFECT OF DIFFERENT PRE-TREATMENTS ON DRYING OF RAINBOW TROUT. NÖHÜ Müh. Bilim. Derg. 2020;9(1):688-95.

download