Araştırma Makalesi
BibTex RIS Kaynak Göster

Samsun'un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 37 Sayı: 2, 387 - 404, 30.06.2022
https://doi.org/10.7161/omuanajas.1077854

Öz

Küresel ısınma toprak sıcaklığının ve toprakların ısısal özelliklerinin değişimini sürekli olarak etkilemektedir. Bu nedenle, farklı toprak ve iklim koşullarında toprakların sıcaklık rejiminin düzenlenmesi ve tahmin edilmesi yöntemlerinde ısısal özelliklerin belirlenmesi gereklidir. Bu araştırmada, arazide belirlenen sıcaklık ölçümlerine göre, Cambisol, Leptosol, Fluvisol ve Vertisol toprakların ısısal özellikleri bulunmuştur. Araştırma topraklarında ısısal yayınım fazla olup, ağırlıklı ortalamaya göre 1.53 .10-6-3.22 ∙10-6 m2 sn-1 aralığında değişmektedir. Maksimum ısısal yayım değeri Lithic Leptosol toprakta 3.22 .10-6 m2 sn-1 olarak saptanmıştır. Hacimsel ısı kapasitesi ise ağırlıklı ortalamaya göre 2.390 ∙106-2.755∙106 J m-3 °C-1 aralığında değişmekte olup, Calcic Vertisol toprakta maksimum, Lithic Leptosol toprakta ise minimum değere sahip olmaktadır. Elde edilen verilere göre, hacimsel nem içeriğinin hacimsel ısı kapasitesini etkileyen temel faktör olduğu gözükmektedir. Toprakların ısı iletkenliğinin, ısısal yayınıma ve hacimsel ısı kapasitesine bağlı olarak 3.989-7.852 watt m-1 °C-1 aralığında değiştiği belirlenmiştir. Maksimum ısı iletkenliği değeri Calcic Vertisol, minimum değer ise Dystric Cambisol toprakta saptanmıştır. Araştırma topraklarının yüzey horizonlarında ısı akışı tipik günlük değişim göstermiş ve ısı akışı değerleri 08:00-18:00 ve 20:00-06:00 saatlerinde sırasıyla 25.536-240.807 watt m-2 ve -241.557 watt m-2 ile -24.350 watt m-2 aralıklarında belirlenmiştir. 

Kaynakça

  • Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86(1): 97-102.
  • Adhikari, P., Udawatta, R.P., Anderson, S.H., 2014. Soil thermal properties under prairies, conservation buffers, and corn-soybean land use systems. Soil Science Society of America Journal, 78:1977-1986.
  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study QTHERMIE-UNIOVI. Geothermics, 54: 35-42.
  • Arkhangelskaya, T.A., 2020. Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Eurasian Soil Science, 53(1): 39-49. (Russian text published in Pochvovedenie, 2020, No. 1, pp. 44-55).
  • Arkhangelskaya, T., Lukyashchenko, K., 2018. Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosystems Engineering, 168: 83-95.
  • Arkhangel’skaya, T.A., Umarova, A.B., 2008. Thermal diffusivity and temperature regime of soils in large lysimeters of the experimental soil station of Moscow State University. Eurasian Soil Science, 41(3): 276–285 (Original Russian text published in Pochvovedenie, 2008, No. 3, pp. 311–320).
  • Arkhangel’skaya, T.A., Luk’yashchenko, K.I., Tikhonravova, P.I., 2015. Thermal diffusivity of typical chernozems in the Kamennaya Steppe reserve. Eurasian Soil Science, 48(2): 177-182.
  • Blake, G.R., Hartge, K.H., 1986. Bulk density and particle denstity. In: Methods of soil analysis, Part I, Phsical and mineralogical methods. pp: 363-381. ASA and SSSA Agronomy Monograph, 9(2nd ed), Madison.
  • Bouyoucous, G.J., 1951. A Recalibration of hydrometer for making mechanical analysis of soils. Agronomy Journal. 43: 9.
  • Christensen, A. F., He, H., Dyck, M. F., Turner, E.L., Chanasyk, D. S., Naeth, M. A., Nichol, C., 2013. In situ measurement of snowmelt infiltration under various topsoil cap thicknesses on a reclaimed site. Canadian Journal of Soil Science, 93(4): 497-510.
  • Colaizzi, P.D., Evett, S.R., Agam,N., Schwartz, R.C., Kustas, W.P., 2016. Soil heat flux calculation for sunlit and shaded surfaces under rowcrops: 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 216: 115-128.
  • Correia, A., Vieira, G., Ramos, M. 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7-11.
  • Dengiz O. 2010. Morphology, Physico-Chemical Properties and Classification of Soils on Terraces of the Tigris River in the South-East Anatolia Region of Turkey. Journal of Agricultural Sciences, 16 (3), 205-212.
  • Dengiz, O., Ekberli, İ., 2017. Bazı vertisol alt grup topraklarının fizikokimyasal ve ısısal özelliklerinin incelenmesi. Akademik Ziraat Dergisi, 6(1): 45-52.
  • Dengiz, O., Sarıoglu, F.E., 2011. Samsun ilinin potansiyel tarım alanlarının genel dağılımları ve toprak etüd ve haritalama çalışmalarının önemi. Anadolu Tarım Bilimleri Dergisi, 26 (3): 241-253.
  • Dutta, B., Grant, B.B., Congreves, K.A., Ward, Smith, W.N., Wagner-Riddle, C., VanderZaag, A.C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management practices, snow cover, and soil texture on soil temperature: Model development in DNDC. Biosystems Engineering, 168: 54-72.
  • Ekberli, İ., Dengiz, O., 2016. Bazı ınceptisol ve entisol alt grup topraklarının fizikokimyasal özellikleriyle ısısal yayınım katsayısı arasındaki regresyon ilişkilerin belirlenmesi. Toprak Su Dergisi, 5(2): 1-10.
  • Ekberli, İ., Gülser, C., 2014. Estimatıon of soil temperature by heat conductivity equation. Vestnik Bashkir State Agrarian University (Вестник Башкирского Государственного Аграрного Университета), 2 (30): 12-15.
  • Fourier, J.B.J., 1822. Théorie analytique de la chaleur (The analytical theory of heat). Paris, 676 p.
  • Fu, Y., Lu, Y., Heitman, J., Ren, T., 2020. Root-induced changes in soil thermal and dielectric properties should not be ignored. Geoderma, 370: 114352.
  • Fu, Y., Lu, S., Ren, T., Horton, R., Heitman, J.L., 2021. Estimating soil water retention curves from soil thermal conductivity measurements. Journal of Hydrology, 603: 127171.
  • Gülser, C., Ekberli, İ., 2019. Toprak sıcaklığının tahmininde ısı taşınım denklemi ve pedotransfer fonksiyonun karşılaştırılması. Toprak Bilimi ve Bitki Besleme Dergisi, 7(2): 158-166.
  • Gülser, C., Ekberli, İ., Mamedov, A., 2019. Toprak sıcaklığının yüzey ısı akışına bağlı olarak değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1): 1-9.
  • Gülser, C., Ekberli, İ., Mamedov, A., Özdemir, N., 2018. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3): 261-269.
  • Hanks, R.J., Ashcroft, G.J., 1980. Applied soil physics. Soil water and temperature applications. Springer-Verlag Berlin Heidelberg, pp. 125-144.
  • Hansen, S., Abrahamsen, P., Petersen, C.T., Styczen, M., 2012. DAISY: Model use, calibration, and validation. Transactions of the American Society of Agricultural and Biological Engineers (ASABE). 55(4): 1315-1333.
  • Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertilizer Research, 27: 245-259.
  • He, H., Zhao, Y., Dyck, M.F., Si, B., Jin, H., Lv, J., Wang, J., 2017. A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 12: 1281-1300.
  • Hilel, D., 2004. Introduction to environmental soil physics. Elsevier Academic Press, USA, pp. 215-233.
  • IUSS Working Group WRB.,2015. World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 203 p.
  • İmamoğlu, A., Turan Demirağ, İ., Dengiz, O., Saygın, F., 2014. Soil erosion risk evaluation: Application of corine methodology at Engiz Watershed, Samsun. Current Advances in Environmental Science, 2(1): 15-21.
  • Jackson, M.L., 1958. Soil chemical analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 498 p.
  • Ju, Z., Hu, C., 2018. Experimental warming alters soil hydrothermal properties and heat flux in a winter wheat field. Archives of Agronomy and Soil Science, 64(5): 718-730.
  • Kapur, S., Akça, E., Günal, H., 2018. Soils of Turkey. Springer International Publishing AG, 369 p.
  • Kodešová, R., Vlasáková, M., Fer, M., Tepla, D., Jaksik, O., Nuberger, P., Adamovsky, R., 2013. Thermal properties of representative soils of the Czech Republic. Soil and Water Research, 8(4): 141-150.
  • Li, Y., Kustas, W.P., Huang, C., Kool, D., Haghighi, E ., 2018. Evaluation of soil resistance formulations for estimates of sensible heat flux in a desert vineyard. Agricultural and Forest Meteorology, 260-261: 255-261.
  • Lu, S., Wang, H., Meng, P., Zhang, J., Zhang, X., 2018. Determination of soil ground heat flux through heat pulse and plate methods: Effects of subsurface latent heat on surface energy balance closure. Agricultural and Forest Meteorology, 260-261: 176-182.
  • Lu, Y., Lu, S., Horton, R., Ren, T., 2014. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Science Society of America Journal, 78: 1859-1868.
  • Nkongolo, N.V., Johnson, S., Schmidt, K., Eivazi, F., 2010. Greenhouse gases fluxes and soil thermal properties in a pasture in centrall Missouri. Journal of Environmental Sciences, 22(7): 1029-1039.
  • Parikh, R.J., Havens, J.A., Scott, H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal, 43: 1050-1052.
  • Passerat de Silans, A.M., Monteny , B.A., Lhomme, J.P. 1996. Apparent soil thermal diffusivity, a case study: HAPEXSahel experiment. Agricultural and Forest Meteorology, 81: 201-216.
  • Peng, X., Heitman, J., Horton, R., Ren, T., 2015. Field evaluation and improvement of the plate method for measuring soil heat flux density. Agricultural and Forest Meteorology, 214-215: 341-349.
  • Peters-Lidard, C.D., Blackburn, E., Liang, X., Wood, E.F., 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences, 55(7): 1209-1224.
  • Richard, G., Cellier, P., 1998. Effect of tillage on bare soil energy balance and thermal regime: an experimental study. Agronomie, 18:163-181.
  • Roxy, M.S., Sumithranand, V.B., Renuka, G., 2010. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. Journal of Earth System Science, 119(4): 507-517.
  • Schjønning, P., 2021. Thermal conductivity of undisturbed soil - Measurements and predictions. Geoderma, 402: 115188.
  • Shao, C., Chen, J., Li L, Xu, W., Chen, S., Gwen, T., Xu, J., Zhang, W., 2008. Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 148: 1433-1443.
  • Sindelar, M., Blanco-Canqui, H., Jin, V.L., Ferguson, R., 2019. Do cover crops and corn residue removal affect soil thermal properties? Soil Science Society of America Journal, 83: 448-457.
  • Soil Survey Staff., 1992. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA.
  • Sterling, A.T., Jackson, R.D., 1986. Temperature. In: Klute, A. (Ed.), Methods of soil analysis Part 1. Physical and mineralogical methods. Agronomy Monograph No: 9, ASA, SSSA, Madison WI.
  • Taghizadeh-Toosi, A., Elsgaard, L., Clough, T.J., Labouriau, R., Ernstsen, V., Petersen, S.O., 2019. Regulation of N2O emissions from acid organic soil drained for agriculture. Biogeosciences, 16: 4555-4575.
  • Tikhonravova, P.I., 2007. Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization ih the Transvolga region. Eurasian Soil Science, 40(1): 47-50 (Original Russian text published in Pochvovedenie, 2007, No. 1, pp. 55-59).
  • Trombotto, D, Borzotta, E., 2009. Indicators of present global warming through changes in active layerthickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321-330.
  • Turan, M., Dengiz, O., Turan Demirağ, İ., 2018. Samsun ilinin Newhall modeline göre toprak sıcaklık ve nem rejimlerinin belirlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 5(2): 131-142.
  • Wang, C., Fang, H., Lu, J., Sun, Y., Zhang, P., Wang, X., 2021. A two-step parameter estimation method for estimating soil thermal properties of coaxial ground heat exchangers. Geothermics, 96: 102229.
  • Wang, J., He, H., Li, M., Dyck, M., Si, B., Lv, J., 2021. A review and evaluation of thermal conductivity models of saturated soils, Archives of Agronomy and Soil Science, 67(7): 974-986.
  • Wang, Z., Zhang, J., Li, Q., Zhang, N., Feng, W., 2022. A theoretical thermal conductivity model for soils treated with microbially induced calcite precipitation (MICP). International Journal of Heat and Mass Transfer, 183: 122091.
  • Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans. R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monso, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., 2002. . Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113: 223–243.
  • Zhang, W., Bai, R., Xu, X., Liu, W., 2021. An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model. International Communications in Heat and Mass Transfer, 129: 105738.
  • Zhou, L., Zhao, W., Yang, R., Feng, H., 2020. Soil temperature modeling in topsoil with plastic film mulching and low spring temperatures. Archives of Agronomy and Soil Science, 66(14): 1936-1947.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

İmanverdi Ekberli 0000-0002-7245-2458

Orhan Dengiz 0000-0002-0458-6016

Coşkun Gülser 0000-0002-6332-4876

İsmail Fatih Ormancı 0000-0002-4426-6498

Arif Aydın 0000-0002-1083-5170

Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 20 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Ekberli, İ., Dengiz, O., Gülser, C., Ormancı, İ. F., vd. (2022). Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi. Anadolu Tarım Bilimleri Dergisi, 37(2), 387-404. https://doi.org/10.7161/omuanajas.1077854
AMA Ekberli İ, Dengiz O, Gülser C, Ormancı İF, Aydın A. Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi. ANAJAS. Haziran 2022;37(2):387-404. doi:10.7161/omuanajas.1077854
Chicago Ekberli, İmanverdi, Orhan Dengiz, Coşkun Gülser, İsmail Fatih Ormancı, ve Arif Aydın. “Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi”. Anadolu Tarım Bilimleri Dergisi 37, sy. 2 (Haziran 2022): 387-404. https://doi.org/10.7161/omuanajas.1077854.
EndNote Ekberli İ, Dengiz O, Gülser C, Ormancı İF, Aydın A (01 Haziran 2022) Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi. Anadolu Tarım Bilimleri Dergisi 37 2 387–404.
IEEE İ. Ekberli, O. Dengiz, C. Gülser, İ. F. Ormancı, ve A. Aydın, “Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi”, ANAJAS, c. 37, sy. 2, ss. 387–404, 2022, doi: 10.7161/omuanajas.1077854.
ISNAD Ekberli, İmanverdi vd. “Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi”. Anadolu Tarım Bilimleri Dergisi 37/2 (Haziran 2022), 387-404. https://doi.org/10.7161/omuanajas.1077854.
JAMA Ekberli İ, Dengiz O, Gülser C, Ormancı İF, Aydın A. Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi. ANAJAS. 2022;37:387–404.
MLA Ekberli, İmanverdi vd. “Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi”. Anadolu Tarım Bilimleri Dergisi, c. 37, sy. 2, 2022, ss. 387-04, doi:10.7161/omuanajas.1077854.
Vancouver Ekberli İ, Dengiz O, Gülser C, Ormancı İF, Aydın A. Samsun’un Ondokuz Mayıs İlçesi Aşağı Engiz Havzasının Bazı Topraklarının Isısal Özelliklerinin İncelenmesi. ANAJAS. 2022;37(2):387-404.
Online ISSN: 1308-8769