Araştırma Makalesi
BibTex RIS Kaynak Göster

Individual Privacy Perception in the Digital Age: The Interaction of Artificial Intelligence Attitude and Dependency

Yıl 2025, Cilt: 22 Sayı: 5, 869 - 881, 30.09.2025
https://doi.org/10.26466/opusjsr.1725180

Öz

The increasing dependence on AI-supported services raises important questions about how positive beliefs about AI can turn into privacy risks. This study tests a gender-moderated mediation model of AI attitude, AI dependence, and online privacy concern (OPC) among Turkish university students. A cross-sectional survey conducted on 478 students using validated scales (AIAS-4, AI Dependency Scale, OPC Scale) was analyzed using structural equation modeling and the PROCESS Model 59. The measurement model demonstrated excellent fit (χ²/df = 1.01, CFI = 0.999, RMSEA = 0.005) and strong reliability-validity indicators. AI attitude significantly increased AI dependency (β = .50, p < .001), which in turn strengthened OPC (β = .77, p < .001). Gender moderates both relationships and reveals a significant moderator-mediation index (−.11; 95% CI [−.21, −.01]). Overall, the model explains 28% of the variance in OPC. The findings reveal a two-way effect of positive AI attitudes: while promoting beneficial participation, they also increase dependency-based privacy concerns, particularly among female users. Organizations should integrate privacy-aware AI literacy and gender-sensitive feedback mechanisms into digital platforms to mitigate risks while maintaining trust.

Kaynakça

  • Alakurt, T. (2017). Çevrimiçi mahremiyet kaygısı ölçeğinin Türk kültürüne uyarlanması. Pegem Eğitim ve Öğretim Dergisi, 7(4), 611-636.
  • Barnes, S. J., & Pressey, A. D. (2012). In search of the “privacy paradox”: Privacy concerns and willingness to disclose in online social networks. Journal of Business Research, 66(9), 1528–1535. https://doi.org/10.1016/j.jbus-res.2012.02.015
  • Bayor, L., Weinert, C., Maier, C., & Weitzel, T. (2025). Social-oriented communication with AI companions: Benefits, costs, and contextual patterns. Business & Information Systems Engineering, 67(4), 1–19. https://doi.org/10.1007/s12599-025-00955-1
  • Buchanan, T., Paine, C., Joinson, A. N., & Reips, U. D. (2007). Development of measures of online privacy concern and protection for use on the Internet. Journal of the American Society for Information Science and Technology, 58(2), 157–165. https://doi.org/-10.1002/asi.20459
  • Byrne, B. M. (2013). Structural equation modeling with AMOS: Basic concepts, applications, and programming (1st ed.). New York, NY: Routledge. https://doi.org/10.4324/97802-03807644
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. http://doi.org/10.-1207/S15328007SEM0902_5
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
  • Degeling, M., Lentzsch, C., Nolte, A., Herrmann, T., & Loser, K. U. (2016, November). Privacy by socio-technical design: A collaborative approach for privacy friendly system design. In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC) (pp. 502-505). IEEE. https://doi.org/10.1109/CIC.2016.077
  • Elliott, D., & Soifer, E. (2022). AI technologies, privacy, and security. Frontiers in Artificial Intelligence, 5, 826737. https://doi.org/10.-3389/frai.2022.826737
  • Emon, M. M. H., Khan, T., Rahman, M. A., & Siam, S. A. J. (2024, September). Factors influencing the usage of artificial intelligence among Bangladeshi professionals: Mediating role of attitude towards the technology. In 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS) (pp. 1-7). IEEE. https://doi.org/10.-1109/COMPAS60761.2024.10796110
  • Fogel, J., & Nehmad, E. (2009). Internet social network communities: Risk taking, trust, and privacy concerns. Computers in Human Behavior, 25(1), 153–160. http://dx.doi.org/-10.1016/j.chb.2008.08.006
  • Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Fossa, F. (2025). Artificial intelligence and human autonomy: the case of driving automation. AI & Soc, 40, 1851–1862. https://doi.org/10.1007/s00146-024-01955-7
  • Golda, A., Mekonen, K., Pandey, A., Singh, A., Hassija, V., Chamola, V., & Sikdar, B. (2024). Privacy and security concerns in generative AI: a comprehensive survey. IEEE Access. https://doi.org/10.1109-/ACCESS.2024.3381611
  • Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS-4): a brief measure of general attitude toward artificial intelligence. Frontiers in psychology, 14, 1191628. https://doi.org/10.3389/fpsyg.-2023.1191628
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2020). Multivariate data analysis (9th ed.). Harlow, England: Pearson.
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. http://doi.org/10.1007/s11747-014-0403-8
  • Herbert, F., Becker, S., Schaewitz, L., Hielscher, J., Kowalewski, M., Sasse, A., ... & Dürmuth, M. (2023, April). A world full of privacy and security (mis) conceptions? findings of a representative survey in 12 countries. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-23). https://doi.org/10.1145/3544548.358141
  • Herriger, C., Merlo, O., Eisingerich, A. B., & Arigayota, A. R. (2025). Context-Contingent Privacy Concerns and Exploration of the Privacy Paradox in the Age of AI, Augmented Reality, Big Data, and the Internet of Things: Systematic Review. Journal of Medical Internet Research, 27, e71951. https://doi.org/10.2196/71951
  • Hoy, M. G., & Milne, G. (2010). Gender differences in privacy-related measures for young adult Facebook users. Journal of interactive advertising, 10(2), 28-45. https://doi.org/10.-1080/15252019.2010.10722168
  • Hu, L.T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. http://doi.org/10.1080/10705519909540118
  • Hyra, A., & Premti, F. (2024). The Double-Edged Sword of AI in Cybersecurity: Boosting Security While Addressing Privacy Risks. Smart Cities and Regional Development (SCRD) Preprints, 1(1).
  • Ibrahim, F., Münscher, J. C., Daseking, M., & Telle, N. T. (2025). The technology acceptance model and adopter type analysis in the context of artificial intelligence. Frontiers in Artificial Intelligence, 7, 1496518. https://doi.org/10.3389/frai.2024.1496518
  • Kline, R. (2013). Exploratory and confirmatory factor analysis. In Applied quantitative analysis in education and the social sciences. 171-207. Routledge.
  • Kosinski, M., Khambatta, P., & Wang, Y. (2024). Facial recognition technology and human raters can predict political orientation from images of expressionless faces even when controlling for demographics and self-presentation.American Psychologist, 79(7), 942–955. https://doi.org/10.1037/amp-0001295
  • Li, X., & Zhang, T. (2017, April). An exploration on artificial intelligence application: From security, privacy and ethic perspective. In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 416-420). IEEE. https://doi.org/10.1109/ICCCBDA.2017.7951949
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Hoboken, NJ: Wiley. https://doi.org/10.1002-/9781119482260
  • Maphosa, V. (2024). The rise of artificial intelligence and emerging ethical and social concerns. AI, Computer Science and Robotics Technology. https://doi.org/10.5772/acrt.-20240020
  • Menard, P., & Bott, G. J. (2025). Artificial intelligence misuse and concern for information privacy: New construct validation and future directions. Information Systems Journal, 35(1), 322-367. https://doi.org/10.1111-/isj.12544
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024, March). Development and validation of a scale for dependence on artificial intelligence in university students. In Frontiers in Education (Vol. 9, p. 1323898). Frontiers Media SA. https://doi.org/10.-3389/feduc.2024.1323898
  • Nigam, A., Pasricha, R., Singh, T., & Churi, P. (2021). A systematic review on AI-based proctoring systems: Past, present and future. Education and Information Technologies, 26(5), 6421-6445. https://doi.org/10.-1007/s10639-021-10597-x
  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill.
  • Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569. http://doi.org/10.1146/annurev-psych-120710-100452
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. http://doi.org-/10.3758/BRM.40.3.879
  • Rohden, S. F., & Zeferino, D. G. (2023). Recommendation agents: an analysis of consumers’ risk perceptions toward artificial intelligence. Electronic Commerce Research, 23(4), 2035-2050. https://doi.org/10.1007/s10660-022-09626-9
  • Said, N., Potinteu, A. E., Brich, I., Buder, J., Schumm, H., & Huff, M. (2023). An artificial intelligence perspective: How knowledge and confidence shape risk and benefit perception. Computers in Human Behavior, 149, 107855. https://doi.org/10.1016-/j.chb.2023.107855
  • Satici, S. A., Okur, S., Yilmaz, F. B., & Grassini, S. (2025). Psychometric properties and Turkish adaptation of the artificial intelligence attitude scale (AIAS-4): evidence for construct validity. BMC Psychology, 13(1), 1-14. https://doi.org/10.1186/s40359-025-02505-6
  • Savaş, B. Ç. (2024). Yapay Zekâya Bağımlılık Ölçeğinin Türkçe’ye Uyarlanması: Geçerlik ve Güvenirlik Çalışması. Herkes için Spor ve Rekreasyon Dergisi, 6(3), 306-315. https://doi.org/10.56639/jsar.1509301
  • Shrestha, A. K., Barthwal, A., Campbell, M., Shouli, A., Syed, S., Joshi, S., & Vassileva, J. (2024). Navigating AI to unpack youth privacy concerns: An in-depth exploration and systematic review. arXiv preprint arXiv:2412.16369. https://doi.org/10.48550-/arXiv.2412.16369
  • Tifferet, S. (2019). Gender differences in privacy tendencies on social network sites: A meta-analysis. Computers in Human Behavior, 93, 1-12. https://doi.org/10.1016/j.chb-.2018.11.046
  • Vasconcelos, H., Jörke, M., Grunde-McLaughlin, M., Gerstenberg, T., Bernstein, M. S., & Krishna, R. (2023). Explanations can reduce over-reliance on AI systems during decision-making. Proceedings of the ACM on Human–Computer Interaction, 7(CSCW2), 1–38. https://doi.org/10.-1145/3579605
  • Yadrovskaia, M., Porksheyan, M., Petrova, A., Dudukalova, D., & Bulygin, Y. (2023). About the attitude towards artificial intelligence technologies. In E3S Web of Conferences (Vol. 376, p. 05025). EDP Sciences. https://doi.org/10.1051/e3sconf/202337605025
  • Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students’ cognitive abilities: A systematic review. Smart Learning Environments, 11(28), 1–24. https://doi.org/10.1186/s40561-024-00316-7
  • Zhang, S., Zhao, X., Zhou, T., & Kim, J. H. (2024). Do you have AI dependency? The roles of academic self-efficacy, academic stress, and performance expectations on problematic AI usage behaviour. International Journal of Educational Technology in Higher Education, 21(34), 1–26. https://doi.org/10.1186/s41239-024-00467-0
  • Zhang, X., Hu, J., & Zhou, Y. (2025). The role of perceived utility and ethical concerns in the adoption of AI-based data analysis tools: A multi-group structural equation model analysis among academic researchers. Education and Information Technologies, 1-33. https://doi.org/10.1007/s10639-025-13535-3

Dijital Çağda Bireysel Gizlilik Algısı: Yapay Zekâ Tutumu ve Bağımlılığının Etkileşimi

Yıl 2025, Cilt: 22 Sayı: 5, 869 - 881, 30.09.2025
https://doi.org/10.26466/opusjsr.1725180

Öz

YZ destekli hizmetlere olan bağımlılığın artması, YZ hakkındaki olumlu inançların nasıl gizlilik risklerine dönüştüğü konusunda önemli sorular ortaya çıkarmaktadır. Bu çalışma, Türk üniversite öğrencileri arasında YZ tutumu, YZ bağımlılığı ve çevrimiçi gizlilik endişesi (OPC) arasında cinsiyete bağlı, ılımlı arabuluculuk modelini test etmektedir. 478 öğrenci üzerinde yapılan kesitsel bir anket, geçerliliği kanıtlanmış ölçekler (AIAS-4, YZ Bağımlılık Ölçeği, OPC ölçeği) kullanılarak gerçekleştirilmiş ve yapısal eşitlik modellemesi, PROCESS Model 59 ile analiz edilmiştir. Ölçüm modeli mükemmel uyum (χ²/df = 1,01, CFI = 0,999, RMSEA = 0,005) ve güçlü güvenilirlik-geçerlilik göstergeleri sergilemiştir. YZ tutumu, YZ bağımlılığını önemli ölçüde artırmakta (β = .50, p < .001), bu da OPC'yi güçlendirmektedir (β = .77, p < .001). Cinsiyet, her iki bağlantıyı da moderatör olarak etkilemekte ve önemli bir moderatör-aracılık indeksi (−.11; %95 CI [−.21, −.01]) ortaya çıkarmıştır. Genel olarak, model OPC varyansının %28'ini açıklamıştır. Bulgular, olumlu YZ tutumlarının iki yönlü bir etkisi olduğunu ortaya koymaktadır: faydalı katılımı teşvik ederken, özellikle kadın kullanıcılar arasında bağımlılığa dayalı gizlilik kaygılarını artırmaktadır. Kurumlar, güveni sürdürürken ortaya çıkan riskleri azaltmak için dijital platformlara gizlilik bilincine sahip YZ okuryazarlığı ve cinsiyete duyarlı geri bildirim mekanizmaları entegre etmelidir.

Kaynakça

  • Alakurt, T. (2017). Çevrimiçi mahremiyet kaygısı ölçeğinin Türk kültürüne uyarlanması. Pegem Eğitim ve Öğretim Dergisi, 7(4), 611-636.
  • Barnes, S. J., & Pressey, A. D. (2012). In search of the “privacy paradox”: Privacy concerns and willingness to disclose in online social networks. Journal of Business Research, 66(9), 1528–1535. https://doi.org/10.1016/j.jbus-res.2012.02.015
  • Bayor, L., Weinert, C., Maier, C., & Weitzel, T. (2025). Social-oriented communication with AI companions: Benefits, costs, and contextual patterns. Business & Information Systems Engineering, 67(4), 1–19. https://doi.org/10.1007/s12599-025-00955-1
  • Buchanan, T., Paine, C., Joinson, A. N., & Reips, U. D. (2007). Development of measures of online privacy concern and protection for use on the Internet. Journal of the American Society for Information Science and Technology, 58(2), 157–165. https://doi.org/-10.1002/asi.20459
  • Byrne, B. M. (2013). Structural equation modeling with AMOS: Basic concepts, applications, and programming (1st ed.). New York, NY: Routledge. https://doi.org/10.4324/97802-03807644
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. http://doi.org/10.-1207/S15328007SEM0902_5
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
  • Degeling, M., Lentzsch, C., Nolte, A., Herrmann, T., & Loser, K. U. (2016, November). Privacy by socio-technical design: A collaborative approach for privacy friendly system design. In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC) (pp. 502-505). IEEE. https://doi.org/10.1109/CIC.2016.077
  • Elliott, D., & Soifer, E. (2022). AI technologies, privacy, and security. Frontiers in Artificial Intelligence, 5, 826737. https://doi.org/10.-3389/frai.2022.826737
  • Emon, M. M. H., Khan, T., Rahman, M. A., & Siam, S. A. J. (2024, September). Factors influencing the usage of artificial intelligence among Bangladeshi professionals: Mediating role of attitude towards the technology. In 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS) (pp. 1-7). IEEE. https://doi.org/10.-1109/COMPAS60761.2024.10796110
  • Fogel, J., & Nehmad, E. (2009). Internet social network communities: Risk taking, trust, and privacy concerns. Computers in Human Behavior, 25(1), 153–160. http://dx.doi.org/-10.1016/j.chb.2008.08.006
  • Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Fossa, F. (2025). Artificial intelligence and human autonomy: the case of driving automation. AI & Soc, 40, 1851–1862. https://doi.org/10.1007/s00146-024-01955-7
  • Golda, A., Mekonen, K., Pandey, A., Singh, A., Hassija, V., Chamola, V., & Sikdar, B. (2024). Privacy and security concerns in generative AI: a comprehensive survey. IEEE Access. https://doi.org/10.1109-/ACCESS.2024.3381611
  • Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS-4): a brief measure of general attitude toward artificial intelligence. Frontiers in psychology, 14, 1191628. https://doi.org/10.3389/fpsyg.-2023.1191628
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2020). Multivariate data analysis (9th ed.). Harlow, England: Pearson.
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. http://doi.org/10.1007/s11747-014-0403-8
  • Herbert, F., Becker, S., Schaewitz, L., Hielscher, J., Kowalewski, M., Sasse, A., ... & Dürmuth, M. (2023, April). A world full of privacy and security (mis) conceptions? findings of a representative survey in 12 countries. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-23). https://doi.org/10.1145/3544548.358141
  • Herriger, C., Merlo, O., Eisingerich, A. B., & Arigayota, A. R. (2025). Context-Contingent Privacy Concerns and Exploration of the Privacy Paradox in the Age of AI, Augmented Reality, Big Data, and the Internet of Things: Systematic Review. Journal of Medical Internet Research, 27, e71951. https://doi.org/10.2196/71951
  • Hoy, M. G., & Milne, G. (2010). Gender differences in privacy-related measures for young adult Facebook users. Journal of interactive advertising, 10(2), 28-45. https://doi.org/10.-1080/15252019.2010.10722168
  • Hu, L.T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. http://doi.org/10.1080/10705519909540118
  • Hyra, A., & Premti, F. (2024). The Double-Edged Sword of AI in Cybersecurity: Boosting Security While Addressing Privacy Risks. Smart Cities and Regional Development (SCRD) Preprints, 1(1).
  • Ibrahim, F., Münscher, J. C., Daseking, M., & Telle, N. T. (2025). The technology acceptance model and adopter type analysis in the context of artificial intelligence. Frontiers in Artificial Intelligence, 7, 1496518. https://doi.org/10.3389/frai.2024.1496518
  • Kline, R. (2013). Exploratory and confirmatory factor analysis. In Applied quantitative analysis in education and the social sciences. 171-207. Routledge.
  • Kosinski, M., Khambatta, P., & Wang, Y. (2024). Facial recognition technology and human raters can predict political orientation from images of expressionless faces even when controlling for demographics and self-presentation.American Psychologist, 79(7), 942–955. https://doi.org/10.1037/amp-0001295
  • Li, X., & Zhang, T. (2017, April). An exploration on artificial intelligence application: From security, privacy and ethic perspective. In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 416-420). IEEE. https://doi.org/10.1109/ICCCBDA.2017.7951949
  • Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Hoboken, NJ: Wiley. https://doi.org/10.1002-/9781119482260
  • Maphosa, V. (2024). The rise of artificial intelligence and emerging ethical and social concerns. AI, Computer Science and Robotics Technology. https://doi.org/10.5772/acrt.-20240020
  • Menard, P., & Bott, G. J. (2025). Artificial intelligence misuse and concern for information privacy: New construct validation and future directions. Information Systems Journal, 35(1), 322-367. https://doi.org/10.1111-/isj.12544
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024, March). Development and validation of a scale for dependence on artificial intelligence in university students. In Frontiers in Education (Vol. 9, p. 1323898). Frontiers Media SA. https://doi.org/10.-3389/feduc.2024.1323898
  • Nigam, A., Pasricha, R., Singh, T., & Churi, P. (2021). A systematic review on AI-based proctoring systems: Past, present and future. Education and Information Technologies, 26(5), 6421-6445. https://doi.org/10.-1007/s10639-021-10597-x
  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill.
  • Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569. http://doi.org/10.1146/annurev-psych-120710-100452
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. http://doi.org-/10.3758/BRM.40.3.879
  • Rohden, S. F., & Zeferino, D. G. (2023). Recommendation agents: an analysis of consumers’ risk perceptions toward artificial intelligence. Electronic Commerce Research, 23(4), 2035-2050. https://doi.org/10.1007/s10660-022-09626-9
  • Said, N., Potinteu, A. E., Brich, I., Buder, J., Schumm, H., & Huff, M. (2023). An artificial intelligence perspective: How knowledge and confidence shape risk and benefit perception. Computers in Human Behavior, 149, 107855. https://doi.org/10.1016-/j.chb.2023.107855
  • Satici, S. A., Okur, S., Yilmaz, F. B., & Grassini, S. (2025). Psychometric properties and Turkish adaptation of the artificial intelligence attitude scale (AIAS-4): evidence for construct validity. BMC Psychology, 13(1), 1-14. https://doi.org/10.1186/s40359-025-02505-6
  • Savaş, B. Ç. (2024). Yapay Zekâya Bağımlılık Ölçeğinin Türkçe’ye Uyarlanması: Geçerlik ve Güvenirlik Çalışması. Herkes için Spor ve Rekreasyon Dergisi, 6(3), 306-315. https://doi.org/10.56639/jsar.1509301
  • Shrestha, A. K., Barthwal, A., Campbell, M., Shouli, A., Syed, S., Joshi, S., & Vassileva, J. (2024). Navigating AI to unpack youth privacy concerns: An in-depth exploration and systematic review. arXiv preprint arXiv:2412.16369. https://doi.org/10.48550-/arXiv.2412.16369
  • Tifferet, S. (2019). Gender differences in privacy tendencies on social network sites: A meta-analysis. Computers in Human Behavior, 93, 1-12. https://doi.org/10.1016/j.chb-.2018.11.046
  • Vasconcelos, H., Jörke, M., Grunde-McLaughlin, M., Gerstenberg, T., Bernstein, M. S., & Krishna, R. (2023). Explanations can reduce over-reliance on AI systems during decision-making. Proceedings of the ACM on Human–Computer Interaction, 7(CSCW2), 1–38. https://doi.org/10.-1145/3579605
  • Yadrovskaia, M., Porksheyan, M., Petrova, A., Dudukalova, D., & Bulygin, Y. (2023). About the attitude towards artificial intelligence technologies. In E3S Web of Conferences (Vol. 376, p. 05025). EDP Sciences. https://doi.org/10.1051/e3sconf/202337605025
  • Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students’ cognitive abilities: A systematic review. Smart Learning Environments, 11(28), 1–24. https://doi.org/10.1186/s40561-024-00316-7
  • Zhang, S., Zhao, X., Zhou, T., & Kim, J. H. (2024). Do you have AI dependency? The roles of academic self-efficacy, academic stress, and performance expectations on problematic AI usage behaviour. International Journal of Educational Technology in Higher Education, 21(34), 1–26. https://doi.org/10.1186/s41239-024-00467-0
  • Zhang, X., Hu, J., & Zhou, Y. (2025). The role of perceived utility and ethical concerns in the adoption of AI-based data analysis tools: A multi-group structural equation model analysis among academic researchers. Education and Information Technologies, 1-33. https://doi.org/10.1007/s10639-025-13535-3
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Strateji, Yönetim ve Örgütsel Davranış (Diğer)
Bölüm Research Articles
Yazarlar

Üzeyir Fidan 0000-0003-3451-4344

Erken Görünüm Tarihi 28 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 23 Haziran 2025
Kabul Tarihi 30 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 5

Kaynak Göster

APA Fidan, Ü. (2025). Individual Privacy Perception in the Digital Age: The Interaction of Artificial Intelligence Attitude and Dependency. OPUS Journal of Society Research, 22(5), 869-881. https://doi.org/10.26466/opusjsr.1725180