Konferans Bildirisi
BibTex RIS Kaynak Göster

Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi

Yıl 2019, Cilt: 25 Sayı: 8, 929 - 937, 31.12.2019

Öz

Birçok endüstriyel alanlarda kullanılan Nonilfenol Etoksilatlar (NFE), su ortamlarında ksenojen-östrojenik mikro kirleticiler oluşturmakta, insan sağlığı ve ekolojik hayat üzerinde önemli riskler doğurmaktadır. NFE; su, hava, sediment ve toprak gibi ortamlarda bulunabilen, konsantrasyonları ve yarılanma ömürleri bulundukları ortama göre değişebilen kimyasal kirleticilerdir. Organik kirleticilerin sulardan uzaklaştırılması amacıyla geliştirilmiş yöntemlerden biri olan adsorpsiyon tekniği, kullanım kolaylığı, nispeten düşük maliyeti ve çamur oluşturmaması nedeniyle yaygın kullanılan uygulamalardan biridir. Bu çalışmada, pektin ile kaplanmış demir oksit nanokompozitler (Pektin-Fe3O4), adsorbent madde olarak sentezlenmiş ve NFE adsorpsiyonundaki etkinliği araştırılmıştır. Sentezlenen Pektin-Fe3O4 adsorbentlerin karakterizasyonunu belirlemek için SEM ve FTIR analizleri yapılmış ve adsorpsiyon prosesine pH, temas süresi, adsorbent dozu ve NFE başlangıç konsantrasyonun etkileri incelenmiştir. Adsorpsiyonun hangi mekanizmaya uyumlu olduğunu belirlemek için izoterm ve kinetik hesaplamaları yapılmış ve elde edilen sonuçlarda Pektin-Fe3O4’ün NFE adsorpsiyonunun D-R izotermine ve adsorpsiyon kinetiğinin yalancı ikinci derece kinetik modele uyduğu tespit edilmiştir. Optimum koşullar altında (pH 7.0, 4 g/L Pektin-Fe3O4 derişimi) %62 oranında NFE giderim verimi elde edilmiştir.

Kaynakça

  • Belibağlı P, Uysal Y. “Çevrede nonilfenol; oluşumu, akıbeti, toksisitesi ve atıksularda arıtımı”. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 20(4), 125-133, 2017.
  • Carotenuto M, Libralato G, Gürses H, Siciliano A, Rizzo L, Guida M, Lofrano G. “Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2:Degradation kinetics and toxicity effects”. Process Safety and Environmental Protection, 124, 1-7, 2019.
  • US Environmental Protection Agency (USEPA). “Aquatic Life Ambient Water Quality Criteria: Nonylphenol”. Washington, America, 2005.
  • Ahel M, Giger W, Koch M. “Behavior of alkyphenol polyethoxylate surfactans in the aquatic environment, occurrence and transformation in sewage treatment”. Water Research, 28, 1131-1142, 1994.
  • Corsi SR, Zitomer DH, Field JA, Cancilla DA. “Nonylphenol ethoxylates and other additives in aircraft deicers, anti-icers, and waters receiving airport runoff”. Environmental Science and Technology, 37(1), 4031–4037, 2003.
  • Hale RC, Smith CL, de Fur PO, Harvey E, Bush EO. “Nonylphenols in sediments and effluents associated with diverse wastewater outfalls”. Environmental Toxicology and Chemistry, 19(41), 946–952, 2000.
  • Lu Z, Gan J. “Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship”. Environmental Science and Technology, 48(2), 1008–1014, 2014.
  • Brix R, Hvid S, Carlsen L, “Solubility of nonylphenol and nonylphenol ethoxylates. On the possible role of micelles”. Chemosphere, 44(4), 759–763, 2001.
  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. “Nonylphenol in the environment: a critical review on occurrence, fate toxicity and treatment in wastewaters”. Environment International, 34(7), 1033–1049, 2008.
  • Kim R, Ha R, Jung P, Kim SH, Yoon MY. “Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent”. Journal of Molecular Recognition, 1-8, 2019.
  • Barrera-Diaz CE, Frontana-Uribe BA, Rodriguez-Pena M, Gomez-Palma JC, Bilyeu B. “Integrated advanced oxidation process, ozonation-electrodegradation treatments, for nonylphenol removal in batch and continuous reactor”. Catalysis Today, 305, 108-116, 2018.
  • Chaturvedi S, Dave PN, Shah NK. “Applications of nanocatalyst in new era”. Journal of Saudi Chemical Society, 16(3), 307–325, 2012.
  • Peralta VJ, Zhao L, Lopez-Moreno ML, De La Rosa G, Hong J, Gardea-Torresdey JL. “Nanomaterials and the environment: A review for the biennium 2008-2010”. Journal of Hazardous Materials, 186(1), 1-15, 2011.
  • Tunca, ÜE. “Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu”. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 23-34, 2015.
  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B. “Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: A review”. Science Technology Development, 34(3), 195-214, 2015.
  • Kyzas GZ, Matis KA. “Nanoadsorbents for pollutants removal: A review”. Journal of Molecular Liquids, 203(1), 159–168, 2015.
  • El Saliby SH, Kandasamy I, Vigneswaran S. “Nanotechnology for wastewater treatment: In brief”. Water and Waste Water Treatment Technologies, 3(1), 1-21, 2008.
  • Tadic M, Kralj S, Jagodic M, Hanzel D, Makovec D, “Magnetic properties of novel super paramagnetic iron oxide nanoclusters and their peculiarity under annealing treatment”. Applied Surface Science, 322(1), 255–264, 2014.
  • Kalfa OM, Yalçınkaya O, Türker AR. “Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium’’. Jounal of Hazardous Materials, 166(1), 455–461, 2009.
  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M. “Superparamagnetism of magnetite nanoparticles: dependence on surface modification”. Langmuir, 20, 2472–2477, 2004.
  • Dai J, Wu S, Jiang W, Li P, Chen X, Liu L, Liu J, Sun D, Chen W, Chen B, Li F. “Facile synthesis of pectin coated Fe3O4 nanospheres by the sonochemical method”. Journal of Magnetism and Magnetic Materials, 331, 62–66, 2013.
  • Mishra M, Huang J, Balasubramanian MK. “The yeast actin cytoskeleton”. Microbiology Reviews, 38(2), 213–227, 2014.
  • Bayat B. “Comparative study of adsorption properties of turkish fly ashes: the case of nickel(II), copper(II) and zinc(II) ”. Journal of Hazardous Materials, 95(3), 251-273, 2002.
  • Öztürk M. Kitosanların Metal Adsorpsiyon Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2014.
  • Doğan M, Alkan M. “Adsorption kinetices of methyl violet onto perlite”. Chemosphere, 50(4), 517-528, 2003.
  • Weber WJ, Morris JC. “Kinetics of adsorption on carbon from solution”.Journal of the Sanitary Engineering Division, 89; 31-60, 1963.
  • Iqbal M, Iqbal N, Bhatti IA, Ahmad N, Zahid M. “Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste”. Ecological Engineering, 88, 265-275, 2016.
  • Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J. “Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae”. Biotechnology Bioengineering, 109(5), 1259-1268, 2012.
  • Babaei AA, Mesdaghiniai AR, Haghighi NJ, Nabizadeh R, Mahvi AH. “Modeling of nonylphenol degradation by photo-nanocatalytic process via multivariate approach”. Journal of Hazardous Materials, 185 (2–3), 1273–1279, 2011.
  • Pan J, Li L,Hang H, Ou H, Zhang L, Yan Y, Shi W. “Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres”. Chemical Engineering Journal, 223, 824–832, 2013.
  • Kakavandi B, Salimi J, Babaei AA, Takdastan A, Alavi N, Neisi A, Ayoubi-Feiz B. “Modeling and optimization of nonylphenol removal from contaminated water media using a magnetic recoverable composite by artificial neural networks”. Water Science & Technology, 1-15, 2016.
  • Dai J, Wu S, Jiang W, Li P, Chen X, Liu L, Liu J, Sun D, Chen W, Chen B, Li F. “Facile synthesis of pectin coated Fe3O4 nanospheres by the sonochemical method”. Journal of Magnetism and Magnetic Materials, 331, 62–66, 2013.
  • Shu HY, Chang MC, Chen CC, Chen PE. “Using resin supported nano zero-valent iron particles for decoloration of acid blue 133 azo dye solution”. Journal of hazardous materials, 184, 499-505. 2010.
  • You X, He M, Cao X, Wang P, Wang J, Li L. “Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: experimental study and modelling”. Applied Surface Science, 475, 621–626, 2019.
  • Zhao Y, Song J, Wu D, Tang T, Sun Y. “One-step synthesis of hydrophobic mesoporous silica and its application in nonylphenol adsorption”. Journal of Physics and Chemistry of Solids, 86, 1–4, 2015.
  • Rachna, Rani M, Shanker U. “Sunlight active ZnO@FeHCF nanocomposite for the degradation of bisphenol A and nonylphenol”. Journal of Environmental Chemical Engineering, 7, 103-153, 2019.
  • Soltani R, Khorramabadi GS, Khataee A, Jorfi S. “Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions”. Journal of the Taiwan Institute of Chemical Engineers, 45 (3), 973–980, 2014.
  • Khatibikamal V, Panahi HA, Torabiana A, Baghdadi M. “Optimized poly(amidoamine) coated magnetic nanoparticles as adsorbent for the removal of nonylphenol from water”. Microchemical Journal, 145, 508–516, 2019.
  • Norimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez SS. “The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism”. Journal of Hazardous Materials, 350, 108-120, 2018.
  • Şencan, A. Sulu Çözelti ve Deri Endüstrisi Atıksuyundan Cr+6 İyonunun Aktif Çamur Biyokütlesi ile Biyosorpsiyonu. Yüksek Lisans Tezi Süleyman Demirel Üniversitesi, Isparta, 2006.
  • Tanyol M. “Malaşit yeşili içeren atıksuların fenton oksidasyon prosesi ile renk gideriminde işletme parametrelerinin optimizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29 (1), 183-191, 2017.
  • Arslan-Alaton I, Tureli G, Olmez-Hanci T. “Treatment of azo dye production wastewater using photo-fenton-like advanced oxidation processes: Optimization by response surface methodology”. Journal of Photochemistry and Photobiology A: Chemistry. 202, 142-153, 2009.

Removal of nonylphenol ethoxylates from water by using pectin coated nano magnetite composite (Pectin-Fe3O4)

Yıl 2019, Cilt: 25 Sayı: 8, 929 - 937, 31.12.2019

Öz

Nonylphenol ethoxylates (NPEO) are used in many industries, and caused to xenogenic-estrogenic micro contamination in aquatic medium. Thus, these pollutants have risks on human health and ecological life. NPEO can be detected in the environments such as water, air, sediment and soil, and their concentrations and half-life may vary depending on the characterization of medium. Adsorption technique, one of the methods developed for the removal of organic pollutants from water, is one of the widely used applications because of its ease of use, relatively low cost and not forming sludge. In this study, iron oxide nanocomposites coated with pectin (Pectin-Fe3O4) were synthesized as adsorbent material and their effects in NPEO adsorption were investigated. SEM and FTIR analyses were performed for pectin-Fe3O4 characterization and the effects of pH, contact time, adsorbent dose and initial concentration of NPEO were investigated on the adsorption process. The isotherms and kinetics were calculated to determine the mechanism of adsorption, and the results showed that NPEO adsorption of Pectin-Fe3O4 was more suitable for D-R isotherm and pseudo second order kinetic model. The maximum adsorption efficiency of NPEO in 20 ppm (62 %) was obtained at pH 7.0 and adsorbent dosage of 4 g/L.

Kaynakça

  • Belibağlı P, Uysal Y. “Çevrede nonilfenol; oluşumu, akıbeti, toksisitesi ve atıksularda arıtımı”. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 20(4), 125-133, 2017.
  • Carotenuto M, Libralato G, Gürses H, Siciliano A, Rizzo L, Guida M, Lofrano G. “Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2:Degradation kinetics and toxicity effects”. Process Safety and Environmental Protection, 124, 1-7, 2019.
  • US Environmental Protection Agency (USEPA). “Aquatic Life Ambient Water Quality Criteria: Nonylphenol”. Washington, America, 2005.
  • Ahel M, Giger W, Koch M. “Behavior of alkyphenol polyethoxylate surfactans in the aquatic environment, occurrence and transformation in sewage treatment”. Water Research, 28, 1131-1142, 1994.
  • Corsi SR, Zitomer DH, Field JA, Cancilla DA. “Nonylphenol ethoxylates and other additives in aircraft deicers, anti-icers, and waters receiving airport runoff”. Environmental Science and Technology, 37(1), 4031–4037, 2003.
  • Hale RC, Smith CL, de Fur PO, Harvey E, Bush EO. “Nonylphenols in sediments and effluents associated with diverse wastewater outfalls”. Environmental Toxicology and Chemistry, 19(41), 946–952, 2000.
  • Lu Z, Gan J. “Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship”. Environmental Science and Technology, 48(2), 1008–1014, 2014.
  • Brix R, Hvid S, Carlsen L, “Solubility of nonylphenol and nonylphenol ethoxylates. On the possible role of micelles”. Chemosphere, 44(4), 759–763, 2001.
  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. “Nonylphenol in the environment: a critical review on occurrence, fate toxicity and treatment in wastewaters”. Environment International, 34(7), 1033–1049, 2008.
  • Kim R, Ha R, Jung P, Kim SH, Yoon MY. “Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent”. Journal of Molecular Recognition, 1-8, 2019.
  • Barrera-Diaz CE, Frontana-Uribe BA, Rodriguez-Pena M, Gomez-Palma JC, Bilyeu B. “Integrated advanced oxidation process, ozonation-electrodegradation treatments, for nonylphenol removal in batch and continuous reactor”. Catalysis Today, 305, 108-116, 2018.
  • Chaturvedi S, Dave PN, Shah NK. “Applications of nanocatalyst in new era”. Journal of Saudi Chemical Society, 16(3), 307–325, 2012.
  • Peralta VJ, Zhao L, Lopez-Moreno ML, De La Rosa G, Hong J, Gardea-Torresdey JL. “Nanomaterials and the environment: A review for the biennium 2008-2010”. Journal of Hazardous Materials, 186(1), 1-15, 2011.
  • Tunca, ÜE. “Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu”. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 23-34, 2015.
  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B. “Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: A review”. Science Technology Development, 34(3), 195-214, 2015.
  • Kyzas GZ, Matis KA. “Nanoadsorbents for pollutants removal: A review”. Journal of Molecular Liquids, 203(1), 159–168, 2015.
  • El Saliby SH, Kandasamy I, Vigneswaran S. “Nanotechnology for wastewater treatment: In brief”. Water and Waste Water Treatment Technologies, 3(1), 1-21, 2008.
  • Tadic M, Kralj S, Jagodic M, Hanzel D, Makovec D, “Magnetic properties of novel super paramagnetic iron oxide nanoclusters and their peculiarity under annealing treatment”. Applied Surface Science, 322(1), 255–264, 2014.
  • Kalfa OM, Yalçınkaya O, Türker AR. “Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium’’. Jounal of Hazardous Materials, 166(1), 455–461, 2009.
  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M. “Superparamagnetism of magnetite nanoparticles: dependence on surface modification”. Langmuir, 20, 2472–2477, 2004.
  • Dai J, Wu S, Jiang W, Li P, Chen X, Liu L, Liu J, Sun D, Chen W, Chen B, Li F. “Facile synthesis of pectin coated Fe3O4 nanospheres by the sonochemical method”. Journal of Magnetism and Magnetic Materials, 331, 62–66, 2013.
  • Mishra M, Huang J, Balasubramanian MK. “The yeast actin cytoskeleton”. Microbiology Reviews, 38(2), 213–227, 2014.
  • Bayat B. “Comparative study of adsorption properties of turkish fly ashes: the case of nickel(II), copper(II) and zinc(II) ”. Journal of Hazardous Materials, 95(3), 251-273, 2002.
  • Öztürk M. Kitosanların Metal Adsorpsiyon Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2014.
  • Doğan M, Alkan M. “Adsorption kinetices of methyl violet onto perlite”. Chemosphere, 50(4), 517-528, 2003.
  • Weber WJ, Morris JC. “Kinetics of adsorption on carbon from solution”.Journal of the Sanitary Engineering Division, 89; 31-60, 1963.
  • Iqbal M, Iqbal N, Bhatti IA, Ahmad N, Zahid M. “Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste”. Ecological Engineering, 88, 265-275, 2016.
  • Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J. “Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae”. Biotechnology Bioengineering, 109(5), 1259-1268, 2012.
  • Babaei AA, Mesdaghiniai AR, Haghighi NJ, Nabizadeh R, Mahvi AH. “Modeling of nonylphenol degradation by photo-nanocatalytic process via multivariate approach”. Journal of Hazardous Materials, 185 (2–3), 1273–1279, 2011.
  • Pan J, Li L,Hang H, Ou H, Zhang L, Yan Y, Shi W. “Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres”. Chemical Engineering Journal, 223, 824–832, 2013.
  • Kakavandi B, Salimi J, Babaei AA, Takdastan A, Alavi N, Neisi A, Ayoubi-Feiz B. “Modeling and optimization of nonylphenol removal from contaminated water media using a magnetic recoverable composite by artificial neural networks”. Water Science & Technology, 1-15, 2016.
  • Dai J, Wu S, Jiang W, Li P, Chen X, Liu L, Liu J, Sun D, Chen W, Chen B, Li F. “Facile synthesis of pectin coated Fe3O4 nanospheres by the sonochemical method”. Journal of Magnetism and Magnetic Materials, 331, 62–66, 2013.
  • Shu HY, Chang MC, Chen CC, Chen PE. “Using resin supported nano zero-valent iron particles for decoloration of acid blue 133 azo dye solution”. Journal of hazardous materials, 184, 499-505. 2010.
  • You X, He M, Cao X, Wang P, Wang J, Li L. “Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: experimental study and modelling”. Applied Surface Science, 475, 621–626, 2019.
  • Zhao Y, Song J, Wu D, Tang T, Sun Y. “One-step synthesis of hydrophobic mesoporous silica and its application in nonylphenol adsorption”. Journal of Physics and Chemistry of Solids, 86, 1–4, 2015.
  • Rachna, Rani M, Shanker U. “Sunlight active ZnO@FeHCF nanocomposite for the degradation of bisphenol A and nonylphenol”. Journal of Environmental Chemical Engineering, 7, 103-153, 2019.
  • Soltani R, Khorramabadi GS, Khataee A, Jorfi S. “Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions”. Journal of the Taiwan Institute of Chemical Engineers, 45 (3), 973–980, 2014.
  • Khatibikamal V, Panahi HA, Torabiana A, Baghdadi M. “Optimized poly(amidoamine) coated magnetic nanoparticles as adsorbent for the removal of nonylphenol from water”. Microchemical Journal, 145, 508–516, 2019.
  • Norimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez SS. “The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism”. Journal of Hazardous Materials, 350, 108-120, 2018.
  • Şencan, A. Sulu Çözelti ve Deri Endüstrisi Atıksuyundan Cr+6 İyonunun Aktif Çamur Biyokütlesi ile Biyosorpsiyonu. Yüksek Lisans Tezi Süleyman Demirel Üniversitesi, Isparta, 2006.
  • Tanyol M. “Malaşit yeşili içeren atıksuların fenton oksidasyon prosesi ile renk gideriminde işletme parametrelerinin optimizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29 (1), 183-191, 2017.
  • Arslan-Alaton I, Tureli G, Olmez-Hanci T. “Treatment of azo dye production wastewater using photo-fenton-like advanced oxidation processes: Optimization by response surface methodology”. Journal of Photochemistry and Photobiology A: Chemistry. 202, 142-153, 2009.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Özel Sayı
Yazarlar

Yağmur Uysal

Pınar Belibağlı

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 8

Kaynak Göster

APA Uysal, Y., & Belibağlı, P. (2019). Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(8), 929-937.
AMA Uysal Y, Belibağlı P. Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2019;25(8):929-937.
Chicago Uysal, Yağmur, ve Pınar Belibağlı. “Pektin-Nano Manyetit Kompozit (Pektin-Fe3O4) kullanılarak Sulardan Nonilfenol etoksilatların Giderilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 8 (Aralık 2019): 929-37.
EndNote Uysal Y, Belibağlı P (01 Aralık 2019) Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 8 929–937.
IEEE Y. Uysal ve P. Belibağlı, “Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 8, ss. 929–937, 2019.
ISNAD Uysal, Yağmur - Belibağlı, Pınar. “Pektin-Nano Manyetit Kompozit (Pektin-Fe3O4) kullanılarak Sulardan Nonilfenol etoksilatların Giderilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/8 (Aralık 2019), 929-937.
JAMA Uysal Y, Belibağlı P. Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:929–937.
MLA Uysal, Yağmur ve Pınar Belibağlı. “Pektin-Nano Manyetit Kompozit (Pektin-Fe3O4) kullanılarak Sulardan Nonilfenol etoksilatların Giderilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 8, 2019, ss. 929-37.
Vancouver Uysal Y, Belibağlı P. Pektin-nano manyetit kompozit (Pektin-Fe3O4) kullanılarak sulardan nonilfenol etoksilatların giderilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(8):929-37.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.