Araştırma Makalesi
BibTex RIS Kaynak Göster

Prediyabetik bireylerde 12 haftalık Nordic Walking egzersizinin etkinliğinin incelenmesi

Yıl 2022, , 285 - 301, 01.04.2022
https://doi.org/10.31362/patd.1012513

Öz

Amaç: Nordic walking (NW) egzersizi batonlarla yapılan, dolayısıyla üst ekstremitenin de harekete katılımını sağlayarak alt ekstremiteye binen yükü azaltan, daha fazla kas grubunu çalıştıran popüler bir egzersiz türüdür. Diabetes mellitus gelişimini önlemek için egzersiz önerilir. Bu çalışmanın amacı 40-65 yaşlarındaki prediyabetik kadınlarda NW egzersizinin insülin direnci, eritrosit deformabilitesi, adipokin düzeyleri ve oksidatif stres üzerindeki etkilerini araştırmaktır.
Gereç ve yöntem: Prediyabetik bireylere (n=16) maksimum kalp hızının %65’inde, 3 gün/hafta, 12 haftalık ilerleyici NW egzersizi uygulanmıştır. Eritrosit deformabilitesi bir viskometre aracılığıyla ve oksidatif stres ile serum adipokin düzeyleri ticari kitlerle ölçülmüştür.

Bulgular: Uygulanan NW egzersizi hastaların kilo vermesine, vücut yağ yüzdelerinde azalmaya sebep olmuştur (p<0,05). Bel, kalça, uyluk, göğüs çevreleri de egzersiz sonucunda azalmıştır (p<0,05). Prediyabetik hastaların başlangıç açlık kan şekeri, serum insülin ve HbA1c düzeyleri sağlıklı gruptan yüksek iken (p=0,001, p=0,013 ve p=0,021, sırasıyla), uygulanan egzersiz programı bu parametrelerin kontrol  değerlerine dönmesine yol açmıştır. Egzersiz prediyabetik bireylerin eritrosit deformabilitesinde akut ve uzun süreli artışlara sebep olmuştur (p<0,05). Prediyabetik bireylerde ilk egzersiz seansı akut etkiyle total oksidan kapasite ve oksidatif

stres indeksinde azalma oluşturmuştur (p=0,015 ve p=0,013, sırasıyla). Serum adipokin düzeylerinde herhangi bir değişiklik saptanmamıştır.
Sonuç: Sonuçlarımız NW egzersiz eğitiminin prediyabetik bireylerde diyabet  gelişiminin önlenmesinde faydalı olabileceğini, doku kanlanmasını düzenlemek ve akut dönemde oksidatif stresi azaltmak suretiyle olası komplikasyonların gelişimine olumlu katkıları olabileceğini göstermektedir. 

Destekleyen Kurum

PAU Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2019SABE006

Kaynakça

  • [1] Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 2004;96(1):3–10. https://doi.org/10.1152/japplphysicol.00757.2003
  • [2] De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva AMVD. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract 2018;137:149-159. https://doi.org/10.1016/j.diabres.2017.12.017
  • [3] Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and ıts complications. Oxid Med Cell Longev 2019;2019:5953685. https://doi.org/10.1155/2019/5953685.
  • [4] Earnest CP. Exercise interval training: an improved stimulus for improving the physiology of pre-diabetes. Med Hypotheses 2008;71(5):752-761. https://doi.org/10.1016/j.mehy.2008.06.024
  • [5] Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012;379(9833):2279-2290. https://doi.org/10.1016/S0140-6736(12)60283-9
  • [6] Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides 2014;56:94-110. https://doi.org/10.1016/j.peptides.2014.03.021
  • [7] Perakakis N, Triantafyllou GA, Fernández-Real JM. et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 2017;13(6):324-337. https://doi.org/10.1038/nrendo.2016.221
  • [8] Buchanan CM, Phillips AR, Cooper GJ. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insülin secretion. Biochem J 2001;360(2):431–439. https://doi.org/10.1042/0264-6021:3600431
  • [9] Cheng KC, Li YX, Asakawa A. et al. Characterization of preptin-induced insulin secretion in pancreaticcells. J Endocrinol 2012;215(1):43-49. https://doi.org/10.1530/JOE-12-0176
  • [10] Yang G, Li L, Chen W, Liu H, Boden G, Li K. Circulating preptin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Ann Med 2009;41(1):52-56. https://doi.org/10.1080/07853890802244142
  • [11] Filková M, Haluzík M, Gay S, Senolt L. The role of resistin as a regülatör of inflammation: Implications for various human pathologies. Clin Immunol 2009;133(2):157-170. https://doi.org/10.1016/j.clim.2009.07.013
  • [12] Vozarova de Courten B, Degawa-Yamauchi M, Considine RV, Tataranni PA. High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in pima indians. Diabetes 2004;53(5):1279-1284. https://doi.org/10.2337/diabetes.53.5.1279
  • [13] Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metabolism 2004;53(1):123-127. https://doi.org/10.1016/j.metabol.2003.07.016
  • [14] Keymel S, Heiss C, Kleinbongard P, Kelm M, Lauer T. Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm Metab Res 2011;43(11):760-765. https://doi.org/10.1055/s-0031-1286325
  • [15] Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 1991;40(6):701-708. https://doi.org/10.2337/diab.40.6.701
  • [16] Schwartz SS, Epstein S, Corkey BE. et al. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab 2017;28(9):645-655. https://doi.org/10.1016/j.tem.2017.05.005
  • [17] Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 2003;46(8):1071-1081. https://doi.org/10.1007/s00125-003-1160-2
  • [18] Colberg SR, Sigal RJ, Fernhall B. et al. Exercise and type 2 diabetes: the american college of sports medicine and the american diabetes association: joint position statement. Diabetes Care 2010;33(12):147-167. https://doi.org/10.2337/dc10-9990
  • [19] Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51(10):2944-2950. https://doi.org/10.2337/diabetes.51.10.2944
  • [20] Di Donato DM, West DW, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab 2014;306(9):E1025-1032. https://doi.org/doi: 10.1152/ajpendo.00487.2013
  • [21] Skórkowska-Telichowska K, Kropielnicka K, Bulińska K. et al. Nordic walking in the second half of life. Aging Clin Exp Res 2016;28(6):1035-1046. https://doi.org/10.1007/s40520-016-0531-8
  • [22] Church TS, Earnest CP, Morss GM. Field testing of physiological responses associated with nordic walking. Res Q Exerc Sport 2002;73(3):296-300. https://doi.org/10.1080/02701367.2002.10609023
  • [23] Praet SF, van Rooij ES, Wijtvliet A. et al. Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial. Diabetologia 2008;51(5):736-746. https://doi.org/10.1007/s00125-008-0950-y
  • [24] Gidlund EK, Walden FV, Venojärvi M. et al. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep 2016;4(23):e13063. https://doi.org/10.14814/phy2.13063
  • [25] Jung ME, Bourne JE, Beauchamp MR, Robinson E, Little JP. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res 2015;2015:191595. https://doi.org/10.1155/2015/191595
  • [26] Robinson E, Durrer C, Simtchouk S. et al. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol 2015;119(5):508-516. https://doi.org/10.1152/japplphysiol.00334.2015
  • [27] Dumke CL. Health-related physical fitness testing and Interpretation. In: Riebe D, ed. American college of sports medicine (ACSM) ACSM’s guidelines for exercise testing and prescription. 10nd ed. Philadelphia: wolters kluwer health, 2018;138-141.
  • [28] Otman AS, Kose N. Antropometrik ölçümler. Tedavi hareketlerinde temel değerlendirme prensipleri, 4.baski. Ankara: yücel matbaacılık, 2008;50-61.
  • [29] Safarimosavi S, Mohebbi H , Rohani H. High-intensity interval vs. continuous endurance training: preventive effects on hormonal changes and physiological adaptations in prediabetes patients. J Strength Cond Res 2018;22.
  • [30] Baskurt OK, Boynard M, Cokelet GC. et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 2009;42(2):75-97. https://doi.org/10.3233/CH-2009-1202
  • [31] Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • [32] Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37:112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • [33] Kosecik M, Erel O, Sevinc E, Selek, S. Increased oxidative stres in children exposed to passive smoking. Int J Cardiol 2005;100:61-64. https://doi.org/10.1016/j.ijcard.2004.05.069
  • [34] Fritz T, Caidahl K, Krook A. et al. Effects of nordic walking on cardiovascular risk factors in overweight individuals with type 2 diabetes, impaired or normal glucose tolerance. Diabetes Metab Res Rev 2013;29(1):25-32. https://doi.org/10.1002/dmrr.2321
  • [35] Tuomilehto J, Lindström J, Eriksson JG. et al. Finnish diabetes prevention study group.prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344(18):1343-1350. https://doi.org/10.1056/NEJM200105033441801
  • [36] Kinney AL, Besier TF, Silder A, Delp SL, D'Lima DD, Fregly BJ. Changes in in vivo knee contact forces through gait modification. J Orthop Res 2013;31(3):434-440. https://doi.org/10.1002/jor.22240
  • [37] Schiffer T, Knicker A, Hoffman U, Harwig B, Hollmann W, Strüder HK. Physiological responses to nordic walking, walking and jogging. Eur J Appl Physiol 2006;98(1):56-61. https://doi.org/10.1007/s00421-006-0242-5
  • [38] Fritz T, Caidahl K, Osler M, Östenson CG, Zierath JR, Wändell P. Effects of nordic walking on health-related quality of life in overweight individuals with Type 2 diabetes mellitus, impaired or normal glucose tolerance. Diabet Med 2011;28(11):1362–1372. https://doi.org/10.1111/j.1464-5491.2011.03348.x
  • [39] Rowan CP, Riddell MC, Gledhill N, Jamnik VK. Aerobic exercise training modalities and prediabetes risk reduction. Med Sci Sports Exerc 2017;49(3):403-412. https://doi.org/10.1249/MSS.0000000000001135
  • [40] Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995;19(1):9–31. https://doi.org/10.2165/00007256-199519010-00002
  • [41] Muravyov AV, Draygin SV, Eremin NN, Muravyov AA. (2002) The microrheological behavior of young and old red blood cells in athletes. Clin Hemorheol Microcirc 2002;26(3):183-188.
  • [42] Rogers ME, Williams DT, Niththyananthan R, Rampling MW, Heslop KE, Johnston DG. Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes. Clin Sci (Lond) 1992;82(3):309-313. https://doi.org/10.1042/cs0820309
  • [43] Zhao G, Ford ES, Li C, Mokdad AH. Compliance with physical activity recommendations in US adults with diabetes. Diabet Med 2008;25(2):221–227. https://doi.org/10.1111/j.1464-5491.2007.02332.x
  • [44] Lee SB, Kim YS, Kim JH. et al. Use of RBC deformability index as an early marker of diabetic nephropathy. Clin Hemorheol Microcirc. 2019;72(1):75-84. https://doi.org/10.3233/CH-180434
  • [45] Neumayr G, Pfister R, Mitterbauer G. et al. Short-term effects of prolonged strenuous endurance exercise on the level of haematocrit in amateur cyclists. Int J Sports Med 2002;23(3):158–161. https://doi.org/10.1055/s-2002-23169
  • [46] Li G, Liu L, Hu H. et al. Age-related carbonyl stress and erythrocyte membrane protein carbonylation. Clin Hemorheol Microcirc 2010;46(4):305-311. https://doi.org/10.3233/CH-2010-1355
  • [47] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2diabetes. Endocr Rev 2002;23(5):599-622. https://doi.org/10.1210/er.2001-0039
  • [48] Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  • [49] Bonnard C, Durand A, Peyrol S. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulinresistant mice. J Clin Invest 2008;118:789–800. https://doi.org/10.1172/JCI32601
  • [50] Bogdanis GC, Stavrinou P, Fatouros IG. et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 2013;61:171-177. https://doi.org/10.1016/j.fct.2013.05.046
  • [51] Bouzid MA , Hammouda O, Matran R, Robin S, Fabre C. Low intensity aerobic exercise and oxidative stress markers in older adults. J Aging Phys Act 2014;22(4):536-542. https://doi.org/10.1123/japa.2013-0037
  • [52] Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging 2014;34(5):377-383. https://doi.org/10.1111/cpf.12108
  • [53] Vezzoli A, Pugliese L, Marzorati M, Serpiello FR , La Torre A,Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One 2014;9(1):e87506. https://doi.org/10.1371/journal.pone.0087506
  • [54] Tomás M, Elosua R, Sentí M. et al. Paraoxonase1-192 polymorphism modulates the effects of regular and acute exercise on paraoxonase1 activity. J Lipid Res 2002;43(5):713-720.
  • [55] Malin SK, Rynders CA, Weltman JY, Roberts JL, Barrett EJ, Weltman A. Endothelial function following glucose ingestion in adults with prediabetes: role of exercise intensity. Obesity (Silver Spring) 2016;24(7):1515-1521. https://doi.org/10.1002/oby.21522
  • [56] Baskurt OK, Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 1998;24(1):102-110. https://doi.org/10.1016/s0891-5849(97)00169-x
  • [57] Rifkind JM, Ajmani RS, Heim J. Impaired hemorheology in the aged associated with oxidative stres. Adv Exp Med Biol 1997;428:7-13. https://doi.org/10.1007/978-1-4615-5399-1_2
  • [58] Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J. Lab Clin Med 1997;130:183-190. https://doi.org/10.1016/s0022-2143(97)90094-9
  • [59] Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med 1998;157(2):421-427. https://doi.org/10.1164/ajrccm.157.2.9611103
  • [60] Ajmani RS, Fleg JL, Demehin AA. et al. Oxidative stress and hemorheological changes induced byacute treadmill exercise. Clin. Hemorheol. Microcirc 2003;28(1):29-40.
  • [61] Wintrobe MM, Lee GR, Boggs DR. et al. The mature erythrocyte in Clinical Hematology. Jamieson GA, Greenwalt TJ. Ed. Philadelphia: JB Lipponcott, 1981;75-144.
  • [62] Mohandas, N. Molecular basis for red cell membrane viscoelastic properties. Biochem Soc Trans 1992;20:776-782. https://doi.org/10.1042/bst0200776
  • [63] Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993;30(3):171-192.
  • [64] Tonjes A, Fasshauer M, Kratzsch J, Stumvoll M, Bluher M. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One 2010;5(11):e13911. https://doi.org/10.1371/journal.pone.0013911
  • [65] Duran ID, Gülçelik NE, Ünal M. et al. Irisin levels in the progression of diabetes in sedentary women. Clin Biochem 2015;48(18):1268-1272. https://doi.org/10.1016/j.clinbiochem.2015.07.098
  • [66] Norheim F, Langleite TM, Hjorth M. et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 2014;281(3):739-749. https://doi.org/10.1111/febs.12619
  • [67] Bu Z, Kuok K, Meng J, Wang R, Xu B, Zhang H. The relationship between polycystic ovary syndrome, glucose tolerance status and serum preptin level. Reprod Biol Endocrinol 2012;10:10. https://doi.org/10.1186/1477-7827-10-10
  • [68] Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002;13(1):51-59. https://doi.org/10.1097/00041433-200202000-00008
  • [69] Holst D, Grimaldi PA. New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol 2002;13(3):241-245. https://doi.org/10.1097/00041433-200206000-00002
  • [70] Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6):2548-2556. https://doi.org/10.1210/jc.2004-0395
  • [71] Jamurtas AZ, Theocharis V, Koukoulis G.et al. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur J Appl Physiol 2006;97(1):122-126. https://doi.org/10.1007/s00421-006-0169-x
  • [72] Balducci S, Zanuso S, Nicolucci A. et al. Anti- inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities
  • [73] Giannopoulou I, Fernhall B, Carhart R. et al. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 2005;54(7):866-875. https://doi.org/10.1016/j.metabol.2005.01.033

Examination of the effectiveness of 12-week Nordic Walking exercise in prediabetic individuals

Yıl 2022, , 285 - 301, 01.04.2022
https://doi.org/10.31362/patd.1012513

Öz

Purpose: Nordic walking (NW) exercise is a type of exercise performed with batons, thus enabling the upper extremity to participate in the movement, reducing the load on the lower extremity and resulting in the involvement of large muscle groups. Exercise is recommended to prevent the development of diabetes mellitus. The aim of this study was to investigate the effects of NW exercise on insulin resistance, erythrocyte deformability, adipokine levels, oxidative stress in prediabetic women aged 40-65 years.
Materials and methods: Prediabetic individuals underwent progressive NW exercise at 65% of maximal heart rate for 3 days/week/12 weeks. Erythrocyte deformability was measured with an ektacytometer. Oxidative stress, serum adipokines were determined by commercial kits.
Results: NW exercise induced weight loss and decrement in body fat percentage (p<0.05). Waist, hips, thighs, chest circumferences were also reduced in response to exercise (p<0.05). NW exercise returned fasting blood glucose, insulin, HbA1c levels of prediabetic individuals to control levels (p=0.001, p=0.013 and p=0.021, respectively). Exercise yielded acute and prolonged increases in erythrocyte deformability of  prediabetic individuals (p<0.05). The first exercise session caused decrement of total oxidant status and oxidative stress (p=0.015 and p=0.013, respectively). No alteration in serum adipokines was detected.
Conclusions: Our results demonstrate that NW exercise may contribute to the  prevention of diabetes development in prediabetic individuals. It may also be beneficial in preventing the development of possible complications by regulating perfussion and acutely reducing oxidative stress.

Proje Numarası

2019SABE006

Kaynakça

  • [1] Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 2004;96(1):3–10. https://doi.org/10.1152/japplphysicol.00757.2003
  • [2] De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva AMVD. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract 2018;137:149-159. https://doi.org/10.1016/j.diabres.2017.12.017
  • [3] Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and ıts complications. Oxid Med Cell Longev 2019;2019:5953685. https://doi.org/10.1155/2019/5953685.
  • [4] Earnest CP. Exercise interval training: an improved stimulus for improving the physiology of pre-diabetes. Med Hypotheses 2008;71(5):752-761. https://doi.org/10.1016/j.mehy.2008.06.024
  • [5] Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012;379(9833):2279-2290. https://doi.org/10.1016/S0140-6736(12)60283-9
  • [6] Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides 2014;56:94-110. https://doi.org/10.1016/j.peptides.2014.03.021
  • [7] Perakakis N, Triantafyllou GA, Fernández-Real JM. et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 2017;13(6):324-337. https://doi.org/10.1038/nrendo.2016.221
  • [8] Buchanan CM, Phillips AR, Cooper GJ. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insülin secretion. Biochem J 2001;360(2):431–439. https://doi.org/10.1042/0264-6021:3600431
  • [9] Cheng KC, Li YX, Asakawa A. et al. Characterization of preptin-induced insulin secretion in pancreaticcells. J Endocrinol 2012;215(1):43-49. https://doi.org/10.1530/JOE-12-0176
  • [10] Yang G, Li L, Chen W, Liu H, Boden G, Li K. Circulating preptin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Ann Med 2009;41(1):52-56. https://doi.org/10.1080/07853890802244142
  • [11] Filková M, Haluzík M, Gay S, Senolt L. The role of resistin as a regülatör of inflammation: Implications for various human pathologies. Clin Immunol 2009;133(2):157-170. https://doi.org/10.1016/j.clim.2009.07.013
  • [12] Vozarova de Courten B, Degawa-Yamauchi M, Considine RV, Tataranni PA. High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in pima indians. Diabetes 2004;53(5):1279-1284. https://doi.org/10.2337/diabetes.53.5.1279
  • [13] Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metabolism 2004;53(1):123-127. https://doi.org/10.1016/j.metabol.2003.07.016
  • [14] Keymel S, Heiss C, Kleinbongard P, Kelm M, Lauer T. Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm Metab Res 2011;43(11):760-765. https://doi.org/10.1055/s-0031-1286325
  • [15] Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 1991;40(6):701-708. https://doi.org/10.2337/diab.40.6.701
  • [16] Schwartz SS, Epstein S, Corkey BE. et al. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab 2017;28(9):645-655. https://doi.org/10.1016/j.tem.2017.05.005
  • [17] Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 2003;46(8):1071-1081. https://doi.org/10.1007/s00125-003-1160-2
  • [18] Colberg SR, Sigal RJ, Fernhall B. et al. Exercise and type 2 diabetes: the american college of sports medicine and the american diabetes association: joint position statement. Diabetes Care 2010;33(12):147-167. https://doi.org/10.2337/dc10-9990
  • [19] Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51(10):2944-2950. https://doi.org/10.2337/diabetes.51.10.2944
  • [20] Di Donato DM, West DW, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab 2014;306(9):E1025-1032. https://doi.org/doi: 10.1152/ajpendo.00487.2013
  • [21] Skórkowska-Telichowska K, Kropielnicka K, Bulińska K. et al. Nordic walking in the second half of life. Aging Clin Exp Res 2016;28(6):1035-1046. https://doi.org/10.1007/s40520-016-0531-8
  • [22] Church TS, Earnest CP, Morss GM. Field testing of physiological responses associated with nordic walking. Res Q Exerc Sport 2002;73(3):296-300. https://doi.org/10.1080/02701367.2002.10609023
  • [23] Praet SF, van Rooij ES, Wijtvliet A. et al. Brisk walking compared with an individualised medical fitness programme for patients with type 2 diabetes: a randomised controlled trial. Diabetologia 2008;51(5):736-746. https://doi.org/10.1007/s00125-008-0950-y
  • [24] Gidlund EK, Walden FV, Venojärvi M. et al. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep 2016;4(23):e13063. https://doi.org/10.14814/phy2.13063
  • [25] Jung ME, Bourne JE, Beauchamp MR, Robinson E, Little JP. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res 2015;2015:191595. https://doi.org/10.1155/2015/191595
  • [26] Robinson E, Durrer C, Simtchouk S. et al. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol 2015;119(5):508-516. https://doi.org/10.1152/japplphysiol.00334.2015
  • [27] Dumke CL. Health-related physical fitness testing and Interpretation. In: Riebe D, ed. American college of sports medicine (ACSM) ACSM’s guidelines for exercise testing and prescription. 10nd ed. Philadelphia: wolters kluwer health, 2018;138-141.
  • [28] Otman AS, Kose N. Antropometrik ölçümler. Tedavi hareketlerinde temel değerlendirme prensipleri, 4.baski. Ankara: yücel matbaacılık, 2008;50-61.
  • [29] Safarimosavi S, Mohebbi H , Rohani H. High-intensity interval vs. continuous endurance training: preventive effects on hormonal changes and physiological adaptations in prediabetes patients. J Strength Cond Res 2018;22.
  • [30] Baskurt OK, Boynard M, Cokelet GC. et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 2009;42(2):75-97. https://doi.org/10.3233/CH-2009-1202
  • [31] Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • [32] Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37:112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • [33] Kosecik M, Erel O, Sevinc E, Selek, S. Increased oxidative stres in children exposed to passive smoking. Int J Cardiol 2005;100:61-64. https://doi.org/10.1016/j.ijcard.2004.05.069
  • [34] Fritz T, Caidahl K, Krook A. et al. Effects of nordic walking on cardiovascular risk factors in overweight individuals with type 2 diabetes, impaired or normal glucose tolerance. Diabetes Metab Res Rev 2013;29(1):25-32. https://doi.org/10.1002/dmrr.2321
  • [35] Tuomilehto J, Lindström J, Eriksson JG. et al. Finnish diabetes prevention study group.prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344(18):1343-1350. https://doi.org/10.1056/NEJM200105033441801
  • [36] Kinney AL, Besier TF, Silder A, Delp SL, D'Lima DD, Fregly BJ. Changes in in vivo knee contact forces through gait modification. J Orthop Res 2013;31(3):434-440. https://doi.org/10.1002/jor.22240
  • [37] Schiffer T, Knicker A, Hoffman U, Harwig B, Hollmann W, Strüder HK. Physiological responses to nordic walking, walking and jogging. Eur J Appl Physiol 2006;98(1):56-61. https://doi.org/10.1007/s00421-006-0242-5
  • [38] Fritz T, Caidahl K, Osler M, Östenson CG, Zierath JR, Wändell P. Effects of nordic walking on health-related quality of life in overweight individuals with Type 2 diabetes mellitus, impaired or normal glucose tolerance. Diabet Med 2011;28(11):1362–1372. https://doi.org/10.1111/j.1464-5491.2011.03348.x
  • [39] Rowan CP, Riddell MC, Gledhill N, Jamnik VK. Aerobic exercise training modalities and prediabetes risk reduction. Med Sci Sports Exerc 2017;49(3):403-412. https://doi.org/10.1249/MSS.0000000000001135
  • [40] Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995;19(1):9–31. https://doi.org/10.2165/00007256-199519010-00002
  • [41] Muravyov AV, Draygin SV, Eremin NN, Muravyov AA. (2002) The microrheological behavior of young and old red blood cells in athletes. Clin Hemorheol Microcirc 2002;26(3):183-188.
  • [42] Rogers ME, Williams DT, Niththyananthan R, Rampling MW, Heslop KE, Johnston DG. Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes. Clin Sci (Lond) 1992;82(3):309-313. https://doi.org/10.1042/cs0820309
  • [43] Zhao G, Ford ES, Li C, Mokdad AH. Compliance with physical activity recommendations in US adults with diabetes. Diabet Med 2008;25(2):221–227. https://doi.org/10.1111/j.1464-5491.2007.02332.x
  • [44] Lee SB, Kim YS, Kim JH. et al. Use of RBC deformability index as an early marker of diabetic nephropathy. Clin Hemorheol Microcirc. 2019;72(1):75-84. https://doi.org/10.3233/CH-180434
  • [45] Neumayr G, Pfister R, Mitterbauer G. et al. Short-term effects of prolonged strenuous endurance exercise on the level of haematocrit in amateur cyclists. Int J Sports Med 2002;23(3):158–161. https://doi.org/10.1055/s-2002-23169
  • [46] Li G, Liu L, Hu H. et al. Age-related carbonyl stress and erythrocyte membrane protein carbonylation. Clin Hemorheol Microcirc 2010;46(4):305-311. https://doi.org/10.3233/CH-2010-1355
  • [47] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2diabetes. Endocr Rev 2002;23(5):599-622. https://doi.org/10.1210/er.2001-0039
  • [48] Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  • [49] Bonnard C, Durand A, Peyrol S. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulinresistant mice. J Clin Invest 2008;118:789–800. https://doi.org/10.1172/JCI32601
  • [50] Bogdanis GC, Stavrinou P, Fatouros IG. et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 2013;61:171-177. https://doi.org/10.1016/j.fct.2013.05.046
  • [51] Bouzid MA , Hammouda O, Matran R, Robin S, Fabre C. Low intensity aerobic exercise and oxidative stress markers in older adults. J Aging Phys Act 2014;22(4):536-542. https://doi.org/10.1123/japa.2013-0037
  • [52] Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging 2014;34(5):377-383. https://doi.org/10.1111/cpf.12108
  • [53] Vezzoli A, Pugliese L, Marzorati M, Serpiello FR , La Torre A,Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One 2014;9(1):e87506. https://doi.org/10.1371/journal.pone.0087506
  • [54] Tomás M, Elosua R, Sentí M. et al. Paraoxonase1-192 polymorphism modulates the effects of regular and acute exercise on paraoxonase1 activity. J Lipid Res 2002;43(5):713-720.
  • [55] Malin SK, Rynders CA, Weltman JY, Roberts JL, Barrett EJ, Weltman A. Endothelial function following glucose ingestion in adults with prediabetes: role of exercise intensity. Obesity (Silver Spring) 2016;24(7):1515-1521. https://doi.org/10.1002/oby.21522
  • [56] Baskurt OK, Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 1998;24(1):102-110. https://doi.org/10.1016/s0891-5849(97)00169-x
  • [57] Rifkind JM, Ajmani RS, Heim J. Impaired hemorheology in the aged associated with oxidative stres. Adv Exp Med Biol 1997;428:7-13. https://doi.org/10.1007/978-1-4615-5399-1_2
  • [58] Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J. Lab Clin Med 1997;130:183-190. https://doi.org/10.1016/s0022-2143(97)90094-9
  • [59] Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med 1998;157(2):421-427. https://doi.org/10.1164/ajrccm.157.2.9611103
  • [60] Ajmani RS, Fleg JL, Demehin AA. et al. Oxidative stress and hemorheological changes induced byacute treadmill exercise. Clin. Hemorheol. Microcirc 2003;28(1):29-40.
  • [61] Wintrobe MM, Lee GR, Boggs DR. et al. The mature erythrocyte in Clinical Hematology. Jamieson GA, Greenwalt TJ. Ed. Philadelphia: JB Lipponcott, 1981;75-144.
  • [62] Mohandas, N. Molecular basis for red cell membrane viscoelastic properties. Biochem Soc Trans 1992;20:776-782. https://doi.org/10.1042/bst0200776
  • [63] Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993;30(3):171-192.
  • [64] Tonjes A, Fasshauer M, Kratzsch J, Stumvoll M, Bluher M. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One 2010;5(11):e13911. https://doi.org/10.1371/journal.pone.0013911
  • [65] Duran ID, Gülçelik NE, Ünal M. et al. Irisin levels in the progression of diabetes in sedentary women. Clin Biochem 2015;48(18):1268-1272. https://doi.org/10.1016/j.clinbiochem.2015.07.098
  • [66] Norheim F, Langleite TM, Hjorth M. et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 2014;281(3):739-749. https://doi.org/10.1111/febs.12619
  • [67] Bu Z, Kuok K, Meng J, Wang R, Xu B, Zhang H. The relationship between polycystic ovary syndrome, glucose tolerance status and serum preptin level. Reprod Biol Endocrinol 2012;10:10. https://doi.org/10.1186/1477-7827-10-10
  • [68] Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002;13(1):51-59. https://doi.org/10.1097/00041433-200202000-00008
  • [69] Holst D, Grimaldi PA. New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol 2002;13(3):241-245. https://doi.org/10.1097/00041433-200206000-00002
  • [70] Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6):2548-2556. https://doi.org/10.1210/jc.2004-0395
  • [71] Jamurtas AZ, Theocharis V, Koukoulis G.et al. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur J Appl Physiol 2006;97(1):122-126. https://doi.org/10.1007/s00421-006-0169-x
  • [72] Balducci S, Zanuso S, Nicolucci A. et al. Anti- inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities
  • [73] Giannopoulou I, Fernhall B, Carhart R. et al. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 2005;54(7):866-875. https://doi.org/10.1016/j.metabol.2005.01.033
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Fizyoloji
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Özdamar 0000-0003-0077-7234

Özgen Kılıç Erkek 0000-0001-8037-099X

Süleyman Tümkaya 0000-0002-2982-3145

Hatice Çağla Özdamar 0000-0003-3868-4797

Ali Özdamar 0000-0002-6104-8185

Hilmiye Pakyürek 0000-0002-7084-3770

Melek Tunç-ata 0000-0002-0384-2356

Hande Şenol 0000-0001-6395-7924

Emine Kılıç Toprak 0000-0002-8795-0185

Z. Melek Bor Küçükatay 0000-0002-9366-0205

Proje Numarası 2019SABE006
Yayımlanma Tarihi 1 Nisan 2022
Gönderilme Tarihi 26 Ekim 2021
Kabul Tarihi 1 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

AMA Özdamar M, Kılıç Erkek Ö, Tümkaya S, Özdamar HÇ, Özdamar A, Pakyürek H, Tunç-ata M, Şenol H, Kılıç Toprak E, Bor Küçükatay ZM. Examination of the effectiveness of 12-week Nordic Walking exercise in prediabetic individuals. Pam Tıp Derg. Nisan 2022;15(2):285-301. doi:10.31362/patd.1012513
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır