Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of composite finishing and polishing procedures on primary tooth pulp temperature change

Yıl 2021, Cilt: 14 Sayı: 3, 556 - 564, 01.07.2021
https://doi.org/10.31362/patd.793302

Öz

Purpose: The purpose of this study was to evaluate the effect of different finishing and polishing systems on intrapulpal temperature of primary teeth assessed using a pulpal blood microcirculation model.
Materials and Methods: 10 sound human maxillary second primary molars used. Standardized Class V cavity preparations were performed with dentin thickness of 1 mm and restored with composite resin. The teeth divided into 6 groups with same ten samples in each group: Enhance finishing cup, Enhance PoGo polishing cup, Sof-Lex spiral finishing wheel, Sof-Lex spiral polishing wheel, Super-Snap Rainbow finishing disc, Super-Snap Rainbow super-polishing disc (n=10 per group). These 3 finishing and 3 polishing tips were applied to the restorations on the teeth with a force of 0.4 N, at a speed of 10 000 rpm for 10 seconds with the help of a slow-speed handpiece and a micromotor. The highest temperature increase were measured and noted.
Results: The highest temperature rises was seen in the Enhance finishing cup and Sof-Lex spiral finishing wheel groups with 2.3 ° C, and the lowest temperature measurement was in the Super-Snap Rainbow Super-Polishing Disc group with 1.1 ° C. Super-Snap Rainbow super-polishing disc group demonstrated significantly lower mean values in comparison with all finishing groups and Sof-Lex spiral polishing wheel. None of the groups exceeded the critical intrapulpal temperature increase of 5.6 ° C that causes irreversible damage.
Conclusion: Under these study conditions, it can be suggested that the temperature increase effects of dry applied finishing and polishing systems on primary teeth pulps are within safe limits.

Kaynakça

  • 1. Sahbaz C, Bahsi E, Ince B, Bakir EP, Cellik O. Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins. Scanning 2016;38:448-454. https://doi.org/10.1002/sca.21295
  • 2. Da Costa J, Ferracane J, Paravina RD, Mazur RF, Roeder L. The effect of different polishing systems on surface roughness and gloss of various resin composites. J Esthet Restor Dent 2007;19:214-224; discussion 25-6. https://doi.org/10.1111/j.1708-8240.2007.00104.x
  • 3. Costa G, Fernandes A, Carvalho LAO, de Andrade AC, de Assuncao IV, Borges BCD. Effect of additional polishing methods on the physical surface properties of different nanocomposites: SEM and AFM study. Microsc Res Tech 2018;81:1467-1473. https://doi.org/10.1002/jemt.23147
  • 4. Bansal K, Gupta S, Nikhil V, Jaiswal S, Jain A, Aggarwal N. Effect of Different Finishing and Polishing Systems on the Surface Roughness of Resin Composite and Enamel: An In vitro Profilometric and Scanning Electron Microscopy Study. Int J Appl Basic Med Res 2019;9:154-158. https://doi.org/10.4103/ijabmr.ijabmr_11_19
  • 5. Trowbridge HO, Kim S. Pulp Development, Structure and Function. In: Cohen S, Burns RC, ed. 6th ed. Pathways of the Pulp, sixth ed. St. Louis: Mosby, 1994; 296-336.
  • 6. Ozturk B, Usumez A, Ozturk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004;91:436-440. https://doi.org/10.1016/j.prosdent.2004.02.022
  • 7. Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006;96:328-331. https://doi.org/10.1016/j.prosdent.2006.09.008
  • 8. Dodge WW, Dale RA, Cooley RL, Duke ES. Comparison of wet and dry finishing of resin composites with aluminum oxide discs. Dent Mater 1991;7:18-20. https://doi.org/10.1016/0109-5641(91)90020-Y
  • 9. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol Oral Radiol 1965;19:515-530. https://doi.org/10.1016/0030-4220(65)90015-0
  • 10. Jakubinek MB, O'Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations. Dent Mater 2008;24:1468-1476. https://doi.org/10.1016/j.dental.2008.03.012
  • 11. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009;37:485-490. https://doi.org/10.1016/j.jdent.2009.03.006
  • 12. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I. Temperature rise during orthodontic bonding with various light-curing units--an in vitro study. Angle Orthod 2006;76:330-334. https://doi.org/10.1016/j.jdent.2009.03.006
  • 13. Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-582. https://doi.org/10.1007/s10103-013-1375-5
  • 14. Jefferies SR. Abrasive finishing and polishing in restorative dentistry: a state-of-the-art review. Dent Clin North Am 2007;51:379-397, ix. https://doi.org/10.1016/j.cden.2006.12.002
  • 15. Xian C, Shi YY, Lin XJ, Liu D. Experimental study on energy partition of polishing aero-engine blades with abrasive cloth wheel. Int J Adv Manuf Tech 2020;106:1839-1853. https://doi.org/10.1007/s00170-019-04690-2
  • 16. Dentistry-adhesion-notched-edge shear bond strength test. International Organization for Standardization ISO 29022:2013(E). 2013:2.
  • 17. Centers for Disease Control and Prevention. Guidelines for Infection Control in Dental Health-Care Settings - 2003. MMWR 2003;52(No. RR-17):33.
  • 18. Ertugrul IF, Orhan EO, Yazkan B. Effect of different dry-polishing regimens on the intrapulpal temperature assessed with pulpal blood microcirculation model. J Esthet Restor Dent 2019;31:268-274. https://doi.org/10.1111/jerd.12442
  • 19. Baik JW, Rueggeberg FA, Liewehr FR. Effect of light-enhanced bleaching on in vitro surface and intrapulpal temperature rise. J Esthet Restor Dent 2001;13:370-378. https://doi.org/10.1111/j.1708-8240.2001.tb01022.x
  • 20. Yadav RD, Raisingani D, Jindal D, Mathur R. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study. Int J Clin Pediatr Dent 2016;9:201-208. https://doi.org/10.5005/jp-journals-10005-1364
  • 21. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 1997;24:791-801. https://doi.org/10.1111/j.1365-2842.1997.tb00278.x
  • 22. Pohto M, Scheinin A. Microscopic observations on living dental pulp II. The Effect of Thermal Irritants on the Circulation of the Pulp in the Lower Rat Incisor. Acta Odontol Scand 1958;16: 315-327. https://doi.org/10.3109/00016355809064116
  • 23. Schubert L. Temperature measurements in teeth using the light beam galvanometer during grinding and drilling. Zahnärztl Welt. 1957;58:768-772. in German.
  • 24. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-107. https://doi.org/10.1016/0022-3913(83)90174-9
  • 25. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999;15:275-281. https://doi.org/10.1016/S0109-5641(99)00047-0
  • 26. Mollica FB, Camargo FP, Zamboni SC, Pereira SM, Teixeira SC, Nogueira L, Jr. Pulpal temperature increase with high-speed handpiece, Er:YAG laser and ultrasound tips. J Appl Oral Sci 2008;16:209-213. https://doi.org/10.1590/S1678-77572008000300009
  • 27. Cavalcanti BN, Lage-Marques JL, Rode SM. Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent 2003;90:447-451. https://doi.org/10.1016/j.prosdent.2003.08.022
  • 28. Firoozmand L, Faria R, Araujo MA, di Nicolo R, Huthala MF. Temperature rise in cavities prepared by high and low torque handpieces and Er:YAG laser. Br Dent J 2008;205:E1; discussion 28-29. https://doi.org/10.1038/sj.bdj.2008.491
  • 29. Baldi D, Colombo J, Robiony M, Menini M, Bisagni E, Pera P. Temperature variations in pulp chamber: an in-vitro comparison between ultrasonic and rotating instruments in tooth preparation. Part 1. Minerva Stomatol 2020;69:14-20. https://doi.org/10.23736/S0026-4970.19.04279-1
  • 30. Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 2009;19:48-54. https://doi.org/10.1111/j.1365-263X.2007.00899.x
  • 31. Chiodera G, Gastaldi G, Millar BJ. Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 2009;25:321-325. https://doi.org/10.1016/j.dental.2008.08.006
  • 32. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23:1283-1288. https://doi.org/10.1016/j.dental.2006.11.024
  • 33. Dias M, Choi JJE, Uy CE, Ramani RS, Ganjigatti R, Waddell JN. Real-time pulp temperature change at different tooth sites during fabrication of temporary resin crowns. Heliyon 2019;5:e02971. https://doi.org/10.1016/j.heliyon.2019.e02971
  • 34. Gubrellay P, Karia M, Talesara K, Sharma C, Raghav S, Sujatha P. Effect of Dentin Bonding Agent on Intrapulpal Temperature during Fabrication of Provisional Restorations by a Direct Method: An In Vitro Study. J Contemp Dent Pract 2019;20:947-951.
  • 35. Ramoglu SI, Karamehmetoglu H, Sari T, Usumez S. Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. The Angle Orthod 2015;85:381-385. https://doi.org/10.2319/030814-164.1
  • 36. Silva PC, De Fatima Zanirato Lizarelli R, Moriyama LT, De Toledo Porto Neto S, Bagnato VS. Temperature analysis during bonding of brackets using LED or halogen light base units. Photomed Laser Surg 2005;23:41-46. https://doi.org/10.1089/pho.2005.23.41
  • 37. Carrasco TG, Carrasco-Guerisoli LD, Froner IC. In vitro study of the pulp chamber temperature rise during light-activated bleaching. J Appl Oral Sci 2008;16:355-359. http://dx.doi.org/10.1590/S1678-77572008000500010
  • 38. Kivanc BH, Arisu HD, Ulusoy OI, Saglam BC, Gorgul G. Effect of light-activated bleaching on pulp chamber temperature rise: an in vitro study. Aust Endod J 2012;38:76-79. https://doi.org/10.1111/j.1747-4477.2010.00271.x
  • 39. Kabbach W, Zezell DM, Pereira TM, Albero FG, Clavijo VR, de Andrade MF. A thermal investigation of dental bleaching in vitro. Photomed Laser Surg 2008;26:489-493. https://doi.org/10.1089/pho.2007.2221
  • 40. Mank S, Steineck M, Brauchli L. Influence of various polishing methods on pulp temperature : an in vitro study. J Orofac Orthop 2011;72:348-357. https://doi.org/10.1007/s00056-011-0039-y
  • 41. Jones CS, Billington RW, Pearson GJ. The effects of lubrication on the temperature rise and surface finish of amalgam and composite resin. J Dent 2007;35:36-42. https://doi.org/10.1016/j.jdent.2006.04.006
  • 42. Briseno B, Ernst CP, Willershausen-Zonnchen B. Rise in pulp temperature during finishing and polishing of resin composite restorations: an in vitro study. Quintessence Int 1995;26:361-365.
  • 43. Cobb DS, Dederich DN, Gardner TV. In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser. Lasers Surg Med 2000;26:386-397. https://doi.org/10.1002/(SICI)1096-9101(2000)26:4<386::AID-LSM7>3.0.CO;2-C
  • 44. Enhance® & Enhance® mini Finishing Systems. Enhance® PoGo® Polishing System. Available at: https://assets.dentsplysirona.com/flagship/en/explore/restorative/enhance/524357%20Enhance%20mini%20-%20multi_WEB%20final.pdf Accessed August 17, 2020.
  • 45. Shofu Product Catalogue. Available at: https://www.shofu.de/wp-content/uploads/2019/03/SHOFU-Katalog-UK-2019-02.pdf Accessed August 17 , 2020.
  • 46. Sof-Lex™ Spiral Finishing and Polishing System. Technical Data Sheet. Available at: https://nanopdf.com/download/technical-data-sheet-5b31daa08948f_pdf Accessed August 17, 2020.

Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi

Yıl 2021, Cilt: 14 Sayı: 3, 556 - 564, 01.07.2021
https://doi.org/10.31362/patd.793302

Öz

Amaç: Çalışmanın amacı, farklı bitirme ve cilalama sistemlerinin süt dişi intrapulpal sıcaklık artışı üzerindeki etkilerini, bir pulpal kan mikrosirkülasyon modeli yardımıyla değerlendirmektir.
Gereç ve Yöntem: Çalışma için 10 sağlam insan üst ikinci süt azı dişi kullanıldı. 1 mm dentin kalınlığı kalacak şekilde standardize sınıf V kaviteler hazırlandı ve kompozit rezin ile restore edildi. Dişler, her grupta aynı 10 örnek olacak şekilde 6 gruba ayrıldı: Enhance bitim silindiri, Enhance PoGo cilalama silindiri, Sof-Lex spiral bitim lastiği, Sof-Lex spiral cilalama lastiği, Super-Snap Rainbow bitim diski, Super-Snap Rainbow süper-cilalama diski (n=10 her grup için). Bu 3 bitirme ve 3 cilalama ucu, 0,4 N güç, 10 000 rpm hızda 10 sn boyunca düşük hızda el aleti ve mikromotor yardımıyla dişlerin üzerindeki restorasyonlara uygulandı. En yüksek sıcaklıklar ölçüldü ve not edildi.
Bulgular: En yüksek sıcaklık artışları, 2,3 ° C ile Enhance bitim silindiri ve Sof-Lex spiral bitim lastiği gruplarında, en düşük sıcaklık artışı ise 1,1 ° C ile Super-Snap Rainbow süper-cilalama diski grubunda görüldü. Super-Snap Rainbow süper-cilalama diski grubunun, her 3 bitim grubu ve Sof-Lex spiral cilalama lastiğine göre ortalama sıcaklık artışı anlamlı biçimde daha düşüktü. Hiç bir grup, geri dönüşümsüz hasara neden olan 5,6 ° C kritik pulpa içi sıcaklık artışı seviyesini geçmedi.
Sonuç: Bu çalışmanın koşulları altında, kuru uygulanan bitirme ve cilalama sistemlerinin süt dişi pulpaları üzerindeki sıcaklık artışı etkilerinin güvenli sınırlarda olduğu söylenebilir.

Kaynakça

  • 1. Sahbaz C, Bahsi E, Ince B, Bakir EP, Cellik O. Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins. Scanning 2016;38:448-454. https://doi.org/10.1002/sca.21295
  • 2. Da Costa J, Ferracane J, Paravina RD, Mazur RF, Roeder L. The effect of different polishing systems on surface roughness and gloss of various resin composites. J Esthet Restor Dent 2007;19:214-224; discussion 25-6. https://doi.org/10.1111/j.1708-8240.2007.00104.x
  • 3. Costa G, Fernandes A, Carvalho LAO, de Andrade AC, de Assuncao IV, Borges BCD. Effect of additional polishing methods on the physical surface properties of different nanocomposites: SEM and AFM study. Microsc Res Tech 2018;81:1467-1473. https://doi.org/10.1002/jemt.23147
  • 4. Bansal K, Gupta S, Nikhil V, Jaiswal S, Jain A, Aggarwal N. Effect of Different Finishing and Polishing Systems on the Surface Roughness of Resin Composite and Enamel: An In vitro Profilometric and Scanning Electron Microscopy Study. Int J Appl Basic Med Res 2019;9:154-158. https://doi.org/10.4103/ijabmr.ijabmr_11_19
  • 5. Trowbridge HO, Kim S. Pulp Development, Structure and Function. In: Cohen S, Burns RC, ed. 6th ed. Pathways of the Pulp, sixth ed. St. Louis: Mosby, 1994; 296-336.
  • 6. Ozturk B, Usumez A, Ozturk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004;91:436-440. https://doi.org/10.1016/j.prosdent.2004.02.022
  • 7. Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006;96:328-331. https://doi.org/10.1016/j.prosdent.2006.09.008
  • 8. Dodge WW, Dale RA, Cooley RL, Duke ES. Comparison of wet and dry finishing of resin composites with aluminum oxide discs. Dent Mater 1991;7:18-20. https://doi.org/10.1016/0109-5641(91)90020-Y
  • 9. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol Oral Radiol 1965;19:515-530. https://doi.org/10.1016/0030-4220(65)90015-0
  • 10. Jakubinek MB, O'Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations. Dent Mater 2008;24:1468-1476. https://doi.org/10.1016/j.dental.2008.03.012
  • 11. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009;37:485-490. https://doi.org/10.1016/j.jdent.2009.03.006
  • 12. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I. Temperature rise during orthodontic bonding with various light-curing units--an in vitro study. Angle Orthod 2006;76:330-334. https://doi.org/10.1016/j.jdent.2009.03.006
  • 13. Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-582. https://doi.org/10.1007/s10103-013-1375-5
  • 14. Jefferies SR. Abrasive finishing and polishing in restorative dentistry: a state-of-the-art review. Dent Clin North Am 2007;51:379-397, ix. https://doi.org/10.1016/j.cden.2006.12.002
  • 15. Xian C, Shi YY, Lin XJ, Liu D. Experimental study on energy partition of polishing aero-engine blades with abrasive cloth wheel. Int J Adv Manuf Tech 2020;106:1839-1853. https://doi.org/10.1007/s00170-019-04690-2
  • 16. Dentistry-adhesion-notched-edge shear bond strength test. International Organization for Standardization ISO 29022:2013(E). 2013:2.
  • 17. Centers for Disease Control and Prevention. Guidelines for Infection Control in Dental Health-Care Settings - 2003. MMWR 2003;52(No. RR-17):33.
  • 18. Ertugrul IF, Orhan EO, Yazkan B. Effect of different dry-polishing regimens on the intrapulpal temperature assessed with pulpal blood microcirculation model. J Esthet Restor Dent 2019;31:268-274. https://doi.org/10.1111/jerd.12442
  • 19. Baik JW, Rueggeberg FA, Liewehr FR. Effect of light-enhanced bleaching on in vitro surface and intrapulpal temperature rise. J Esthet Restor Dent 2001;13:370-378. https://doi.org/10.1111/j.1708-8240.2001.tb01022.x
  • 20. Yadav RD, Raisingani D, Jindal D, Mathur R. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study. Int J Clin Pediatr Dent 2016;9:201-208. https://doi.org/10.5005/jp-journals-10005-1364
  • 21. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 1997;24:791-801. https://doi.org/10.1111/j.1365-2842.1997.tb00278.x
  • 22. Pohto M, Scheinin A. Microscopic observations on living dental pulp II. The Effect of Thermal Irritants on the Circulation of the Pulp in the Lower Rat Incisor. Acta Odontol Scand 1958;16: 315-327. https://doi.org/10.3109/00016355809064116
  • 23. Schubert L. Temperature measurements in teeth using the light beam galvanometer during grinding and drilling. Zahnärztl Welt. 1957;58:768-772. in German.
  • 24. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-107. https://doi.org/10.1016/0022-3913(83)90174-9
  • 25. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999;15:275-281. https://doi.org/10.1016/S0109-5641(99)00047-0
  • 26. Mollica FB, Camargo FP, Zamboni SC, Pereira SM, Teixeira SC, Nogueira L, Jr. Pulpal temperature increase with high-speed handpiece, Er:YAG laser and ultrasound tips. J Appl Oral Sci 2008;16:209-213. https://doi.org/10.1590/S1678-77572008000300009
  • 27. Cavalcanti BN, Lage-Marques JL, Rode SM. Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent 2003;90:447-451. https://doi.org/10.1016/j.prosdent.2003.08.022
  • 28. Firoozmand L, Faria R, Araujo MA, di Nicolo R, Huthala MF. Temperature rise in cavities prepared by high and low torque handpieces and Er:YAG laser. Br Dent J 2008;205:E1; discussion 28-29. https://doi.org/10.1038/sj.bdj.2008.491
  • 29. Baldi D, Colombo J, Robiony M, Menini M, Bisagni E, Pera P. Temperature variations in pulp chamber: an in-vitro comparison between ultrasonic and rotating instruments in tooth preparation. Part 1. Minerva Stomatol 2020;69:14-20. https://doi.org/10.23736/S0026-4970.19.04279-1
  • 30. Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 2009;19:48-54. https://doi.org/10.1111/j.1365-263X.2007.00899.x
  • 31. Chiodera G, Gastaldi G, Millar BJ. Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 2009;25:321-325. https://doi.org/10.1016/j.dental.2008.08.006
  • 32. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007;23:1283-1288. https://doi.org/10.1016/j.dental.2006.11.024
  • 33. Dias M, Choi JJE, Uy CE, Ramani RS, Ganjigatti R, Waddell JN. Real-time pulp temperature change at different tooth sites during fabrication of temporary resin crowns. Heliyon 2019;5:e02971. https://doi.org/10.1016/j.heliyon.2019.e02971
  • 34. Gubrellay P, Karia M, Talesara K, Sharma C, Raghav S, Sujatha P. Effect of Dentin Bonding Agent on Intrapulpal Temperature during Fabrication of Provisional Restorations by a Direct Method: An In Vitro Study. J Contemp Dent Pract 2019;20:947-951.
  • 35. Ramoglu SI, Karamehmetoglu H, Sari T, Usumez S. Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. The Angle Orthod 2015;85:381-385. https://doi.org/10.2319/030814-164.1
  • 36. Silva PC, De Fatima Zanirato Lizarelli R, Moriyama LT, De Toledo Porto Neto S, Bagnato VS. Temperature analysis during bonding of brackets using LED or halogen light base units. Photomed Laser Surg 2005;23:41-46. https://doi.org/10.1089/pho.2005.23.41
  • 37. Carrasco TG, Carrasco-Guerisoli LD, Froner IC. In vitro study of the pulp chamber temperature rise during light-activated bleaching. J Appl Oral Sci 2008;16:355-359. http://dx.doi.org/10.1590/S1678-77572008000500010
  • 38. Kivanc BH, Arisu HD, Ulusoy OI, Saglam BC, Gorgul G. Effect of light-activated bleaching on pulp chamber temperature rise: an in vitro study. Aust Endod J 2012;38:76-79. https://doi.org/10.1111/j.1747-4477.2010.00271.x
  • 39. Kabbach W, Zezell DM, Pereira TM, Albero FG, Clavijo VR, de Andrade MF. A thermal investigation of dental bleaching in vitro. Photomed Laser Surg 2008;26:489-493. https://doi.org/10.1089/pho.2007.2221
  • 40. Mank S, Steineck M, Brauchli L. Influence of various polishing methods on pulp temperature : an in vitro study. J Orofac Orthop 2011;72:348-357. https://doi.org/10.1007/s00056-011-0039-y
  • 41. Jones CS, Billington RW, Pearson GJ. The effects of lubrication on the temperature rise and surface finish of amalgam and composite resin. J Dent 2007;35:36-42. https://doi.org/10.1016/j.jdent.2006.04.006
  • 42. Briseno B, Ernst CP, Willershausen-Zonnchen B. Rise in pulp temperature during finishing and polishing of resin composite restorations: an in vitro study. Quintessence Int 1995;26:361-365.
  • 43. Cobb DS, Dederich DN, Gardner TV. In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser. Lasers Surg Med 2000;26:386-397. https://doi.org/10.1002/(SICI)1096-9101(2000)26:4<386::AID-LSM7>3.0.CO;2-C
  • 44. Enhance® & Enhance® mini Finishing Systems. Enhance® PoGo® Polishing System. Available at: https://assets.dentsplysirona.com/flagship/en/explore/restorative/enhance/524357%20Enhance%20mini%20-%20multi_WEB%20final.pdf Accessed August 17, 2020.
  • 45. Shofu Product Catalogue. Available at: https://www.shofu.de/wp-content/uploads/2019/03/SHOFU-Katalog-UK-2019-02.pdf Accessed August 17 , 2020.
  • 46. Sof-Lex™ Spiral Finishing and Polishing System. Technical Data Sheet. Available at: https://nanopdf.com/download/technical-data-sheet-5b31daa08948f_pdf Accessed August 17, 2020.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Yıldırım Erdoğan 0000-0002-5054-1812

İhsan Furkan Ertuğrul 0000-0001-7583-6679

Yayımlanma Tarihi 1 Temmuz 2021
Gönderilme Tarihi 10 Eylül 2020
Kabul Tarihi 25 Kasım 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 3

Kaynak Göster

APA Erdoğan, Y., & Ertuğrul, İ. F. (2021). Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi. Pamukkale Medical Journal, 14(3), 556-564. https://doi.org/10.31362/patd.793302
AMA Erdoğan Y, Ertuğrul İF. Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi. Pam Tıp Derg. Temmuz 2021;14(3):556-564. doi:10.31362/patd.793302
Chicago Erdoğan, Yıldırım, ve İhsan Furkan Ertuğrul. “Kompozit Bitirme Ve Cilalama işlemlerinin süt dişi Pulpal sıcaklık değişimine Etkisi”. Pamukkale Medical Journal 14, sy. 3 (Temmuz 2021): 556-64. https://doi.org/10.31362/patd.793302.
EndNote Erdoğan Y, Ertuğrul İF (01 Temmuz 2021) Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi. Pamukkale Medical Journal 14 3 556–564.
IEEE Y. Erdoğan ve İ. F. Ertuğrul, “Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi”, Pam Tıp Derg, c. 14, sy. 3, ss. 556–564, 2021, doi: 10.31362/patd.793302.
ISNAD Erdoğan, Yıldırım - Ertuğrul, İhsan Furkan. “Kompozit Bitirme Ve Cilalama işlemlerinin süt dişi Pulpal sıcaklık değişimine Etkisi”. Pamukkale Medical Journal 14/3 (Temmuz 2021), 556-564. https://doi.org/10.31362/patd.793302.
JAMA Erdoğan Y, Ertuğrul İF. Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi. Pam Tıp Derg. 2021;14:556–564.
MLA Erdoğan, Yıldırım ve İhsan Furkan Ertuğrul. “Kompozit Bitirme Ve Cilalama işlemlerinin süt dişi Pulpal sıcaklık değişimine Etkisi”. Pamukkale Medical Journal, c. 14, sy. 3, 2021, ss. 556-64, doi:10.31362/patd.793302.
Vancouver Erdoğan Y, Ertuğrul İF. Kompozit bitirme ve cilalama işlemlerinin süt dişi pulpal sıcaklık değişimine etkisi. Pam Tıp Derg. 2021;14(3):556-64.
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır