Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Dizi Aralığında Eğim Açısının Fotovoltaik Sistemlerin Performansina Etkisi

Yıl 2023, , 1573 - 1585, 01.12.2023
https://doi.org/10.2339/politeknik.1260228

Öz

Bir fotovoltaik (PV) sistem için optimum eğim açısı, panellerin üzerine gelen gölgeleme miktarını etkilediği için dizi aralığına bağlıdır. Bu çalışma, Konya ilinde 3000 m² sabit bir alanda 2 m, 2.5 m, 3 m ve 4 m olan dört farklı panel dizisi aralığı için PV sistemlerini modellemiştir. Farklı dizi aralıkları için sistem performansları, konumdaki PV kurulumları için uygun bir açı olarak ifade edilen 35° sabit bir eğim açısı kullanılarak karşılaştırılmıştır. Ayrıca elektrik üretimi açısından dört farklı durum için optimum eğim açısı bulunmuştur. 35° eğim açısına ve 2 m, 2.5 m, 3 m ve 4 m panel dizisi aralığı sahip sistemlerde yılda sırasıyla 622.77 MWh, 566,49 MWh, 495.36 MWh ve 385,72 MWh elektrik enerjisi üretilmiştir. Bunun yanında optimum eğim açıları olan 1°, 15°, 21° ve 27° durumlarında elektrik üretim değerleri %6.19, %4.41, %2.56 ve %0.92 daha fazladır. Benzer şekilde, optimum açılarla elde edilen Performans Oranı (PR) değerleri, sabit eğim açısı durumlarından %20.61, %8.39, %4.12 ve %1.44 daha yüksektir. Ekonomik analize göre, bu panel sıra aralıkları için sabit eğim açısına sahip sistemler sırasıyla 5.127, 4.67, 4.44 ve 4.28 yılda kendini amorti ederken, optimum açılara sahip sistemlerde ise %5.83, %4.26 %2.49 ve %0.91 daha kısa sürede amorti etmektedir. Ayrıca, en yüksek NPV/INV, IRR ve ROI değerleri, sırasıyla 0.915, %20.42 ve %91.57 değerleri ile 3 m panel dizi aralığına ve 21° eğim açısı sahip sistemden elde edildi ve bu sistem tekno-ekonomik olarak en uygun sistem bulunmuştur.

Kaynakça

  • [1] TEİAS, Turkish Electricity Transmission Corporation, https://www.teias.gov.tr/, (Accessed 03.03.2023).
  • [2] İpek Ö. and İpek E. “Determinants of energy demand for residential space heating in Turkey”, Renewable Energy, 194: 1026-1033, (2022).
  • [3] Boluk G. “Renewable energy: policy issues and economic implications in Turkey” International Journal of Energy Economics and Policy, 3(2): 153-167, (2013).
  • [4] Balcilar M., Uzuner G., Nwani C. and Bekun F. V. “Boosting Energy Efficiency in Turkey: The Role of Public–Private Partnership Investment”, Sustainability, 15(3): 2273, (2023).
  • [5] Mukhtarov S., Yüksel S. and Dinçer H. “The impact of financial development on renewable energy consumption: Evidence from Turkey”, Renewable Energy, 187: 169-176, (2022).
  • [6] Bilen K., Işık B., Gezer S. ve Kıyık F., “Hava soğutmalı fotovoltaik panellerde kanatçık tipinin soğutmaya etkisinin teorik olarak incelenmesi”, Politeknik Dergisi, 25(2): 711-722, (2022).
  • [7] Sahin H. and Esen H. “The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey”, Renewable Energy, 192: 859-869, (2022).
  • [8] Cekinir S., Ozgener O. and Ozgener L. “Türkiye’s energy projection for 2050”, Renewable Energy Focus, 43: 93-116, (2022).
  • [9] Gümüş, Z. and Demirtaş, M.. Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması. Politeknik Dergisi, 24(3): 853-865 (2021).
  • [10] IRENA, Renewable Capacity Statistics 2022, https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (Accessed 03.03.2023)
  • [11] Republic of Turkey Ministry of Energy and Natural Resources, Information Center, Solar Energy https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Accessed 03.03.2023).
  • [12] Gross R., Leach M. and Bauen A., “Progress in renewable energy”, Environment International, 29(1): 105–122, (2003).
  • [13] Prvulovic S., Lambic M., Matic M., Tolmac D., Radovanovic L. and Josimovic L. “Solar energy in Vojvodina (Serbia): Potential, scope of use, and development perspective” Energy Sources, Part B: Economics, Planning, and Policy, 11(12): 1111-1117, (2016).
  • [14] Kose F., Aksoy M. H. and Ozgoren, M., “Experimental investigation of solar/wind hybrid system for irrigation in Konya, Turkey”, Thermal Science, 23(1): 4129–4139, (2019).
  • [15] Basaran S. T., Dogru A. O., Balcik F. B., Ulugtekin N. N., Goksel C. and Sozen, S. “Assessment of renewable energy potential and policy in Turkey–Toward the acquisition period in European Union”, Environmental Science & Policy, 46: 82-94, (2015).
  • [16] Ertekin C., Kulcu R. and Evrendilek F. “Techno-economic analysis of solar water heating systems in Turkey”, Sensors, 8(2): 1252-1277, (2008).
  • [17] GEPA, Republic of Turkey Ministry of Energy and Natural Resources https://gepa.enerji.gov.tr/MyCalculator/ (Accessed 03.03.2023).
  • [18] Abuşka M., Akgül M. B. ve Altıntaş V., “Yutucu plaka üzerine konik yayların yerleştirildiği güneş enerjili hava kollektörünün bulanık mantık ile modellenmesi”, Politeknik Dergisi, 20(4): 907-914, (2017).
  • [19] Arıcı, N. and Iskender A. “Fotovoltaik Güneş Santrallerinde Şebeke Bağlantı Sorunları ve Çözümleri”, Politeknik Dergisi, 23(1): 215-222, (2020).
  • [20] Keskin V., Khalejan SHPR. and Çıkla R., “Investigation of the Shading Effect on the Performance of a grid-connected PV Plant in Samsun/Turkey”, Journal of Polytechnic, 24(2): 553-563, (2021).
  • [21] Alonso-García M. C., Ruiz J. M. and Herrmann W., “Computer simulation of shading effects in photovoltaic arrays”, Renewable Energy, 31(12): 1986-1993, (2006).
  • [22] Lalwani M., Kothari D. P. and Singh, M., “Investigation of solar photovoltaic simulation softwares”, International Journal of Applied Engineering Research, 1(3): 585-601, (2010).
  • [23] de Souza Silva J. L., Costa T. S., de Melo K. B., Sakô E. Y., Moreira H. S. and Villalva M. G., “A comparative performance of PV power simulation software with an installed PV plant” IEEE international conference on industrial technology (ICIT), 531-535. IEEE (2020).
  • [24] Vashishtha V. K., Yadav A., Kumar A. and Shukla V. K., “An overview of software tools for the photovoltaic industry”, Materials Today: Proceedings, 64(3): 1450-1454, (2022).
  • [25] Aksoy M. H. and Çalık M. K., “Performance investigation of bifacial photovoltaic panels at different ground conditions”, Konya Journal of Engineering Sciences, 10(3): 704-718, (2022).
  • [26] Aksoy M. H., Ciylez I. and Ispir M., “Effect of Azimuth Angle on The Performance of a Small-Scale on-Grid PV System”, Turkish Journal of Nature and Science, 11(4): 42-49, (2022).
  • [27] Aksoy M. H., Ispir M. and Bakirhan M., “Analysis of the azimuth angles of a medium-scale PV system in non-ideal positions for roof application”, MANAS Journal of Engineering, 11(1): 74-82, (2023).
  • [28] Aksoy M. H. and Ispir M. “Techno-Economic Feasibility of Different Photovoltaic Technologies” Applied Engineering Letters, 8(1): 1-9, (2023).
  • [29] Baqir M. and Channi H. K., “Analysis and design of solar PV system using Pvsyst software”, Materials Today: Proceedings, 48(5): 1332-1338, (2022).
  • [30] Kumar N. M., Kumar M. R., Rejoice P. R. and Mathew M., “Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool”, Energy Procedia, 117: 180-189, (2017).
  • [31] Belmahdi B. and El Bouardi A., “Solar potential assessment using PVsyst software in the northern zone of Morocco”, Procedia Manufacturing, 46: 738-745, (2020).
  • [32] Emziane M. and Al Ali M. “Performance assessment of rooftop PV systems in Abu Dhabi”, Energy and Buildings, 108, 101-105, (2015).
  • [33] Turan O., “Design and Simulation Application of 1 MWp Capacity Rooftop Distributed Solar Power Plant”, Fırat University Journal of Engineering Science, 34(2): 609-626, (2022).
  • [34] Sharma V. and Chandel S. S., “Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India”. Energy, 55: 476-485, (2013).
  • [35] Mermoud A. and Wittmer B., (2014). PVSYST user’s manual. Switzerland, January.
  • [36] Trainer T., “Renewable energy cannot sustain a consumer society”, Springer Science & Business Media, (2007).
  • [37] Kose F., Aksoy M. H. and Ozgoren M., “An assessment of wind energy potential to meet electricity demand and economic feasibility in Konya, Turkey”, International Journal of Green Energy, 11(6): 559-576, (2014).
  • [38] Abdelhady S., “Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)”, Renewable Energy, 168: 332-342, (2021).
  • [39] Aghaei M., Fairbrother A., Gok A., Ahmad S., Kazim S., Lobato K., Oreski G., Reinders A., Schmitz J., Theelen M., Yilmaz P. and Kettle J. “Review of degradation and failure phenomena in photovoltaic modules”, Renewable and Sustainable Energy Reviews, 159: 112160, (2022).
  • [40] The Central Bank of the Turkish Republic, Reeskont ve Avans Faiz Oranları https://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Main+Menu/Temel+Faaliyetler/Para+Politikasi/Reeskont+ve+Avans+Faiz+Oranlari, (Accessed 03.03.2023).
  • [41] EMRA, Energy Market Regulatory Authority, https://www.epdk.gov.tr/ (Accessed 03.03.2023).
  • [42] Han X., Garrison J. and Hug, G. “Techno-economic analysis of PV-battery systems in Switzerland”, Renewable and Sustainable Energy Reviews, 158: 112028, (2022).

Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing

Yıl 2023, , 1573 - 1585, 01.12.2023
https://doi.org/10.2339/politeknik.1260228

Öz

The optimum tilt angle for a photovoltaic (PV) system depends on the row spacing because it affects the amount of shading on the panels. This study modeled PV systems for four different panel row spacings of 2 m, 2.5 m, 3 m, and 4 m in a fixed 3000 m² area in Konya province, Turkey. For different panel row spacings, the system performances were compared using a constant tilt angle of 35°, expressed as a proper angle for PV installations at the considered location. In addition, the optimum tilt angle is found for four different cases in terms of electricity generation. In systems with 35° tilt angles at electricity were produced annually as 622.77 MWh, 566.49 MWh, 495.36 MWh, and 385.72 MWh, respectively, for panel row spacings of 2 m, 2.5 m, 3 m, and 4 m. In addition, these electricity productions are 6.19%, 4.41%, 2.56%, and 0.92% higher with optimum tilt angles as 1°, 15°, 21° and 27°. Similarly, the Performance Ratio (PR) values obtained with the optimum angles are 20.61%, 8.39%, 4.12%, and 1.44%, higher than the fixed tilt angle cases. According to the economic analysis, systems with a fixed tilt angle for these panel row spacings pay back themselves in 5.13, 4.67, 4.44, and 4.28 years, respectively, while systems at optimum angles pay back themselves in a shorter time by 5.83%, 4.26%, 2.49%, and 0.91%. Furthermore, the highest NPV/INV, IRR, and ROI values were obtained from the system with 3 m panel row spacing with the optimum tilt angle of 21° as 0.915, 20.42%, and 91.57%, respectively, which is techno economically found to be the most feasible case.

Kaynakça

  • [1] TEİAS, Turkish Electricity Transmission Corporation, https://www.teias.gov.tr/, (Accessed 03.03.2023).
  • [2] İpek Ö. and İpek E. “Determinants of energy demand for residential space heating in Turkey”, Renewable Energy, 194: 1026-1033, (2022).
  • [3] Boluk G. “Renewable energy: policy issues and economic implications in Turkey” International Journal of Energy Economics and Policy, 3(2): 153-167, (2013).
  • [4] Balcilar M., Uzuner G., Nwani C. and Bekun F. V. “Boosting Energy Efficiency in Turkey: The Role of Public–Private Partnership Investment”, Sustainability, 15(3): 2273, (2023).
  • [5] Mukhtarov S., Yüksel S. and Dinçer H. “The impact of financial development on renewable energy consumption: Evidence from Turkey”, Renewable Energy, 187: 169-176, (2022).
  • [6] Bilen K., Işık B., Gezer S. ve Kıyık F., “Hava soğutmalı fotovoltaik panellerde kanatçık tipinin soğutmaya etkisinin teorik olarak incelenmesi”, Politeknik Dergisi, 25(2): 711-722, (2022).
  • [7] Sahin H. and Esen H. “The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey”, Renewable Energy, 192: 859-869, (2022).
  • [8] Cekinir S., Ozgener O. and Ozgener L. “Türkiye’s energy projection for 2050”, Renewable Energy Focus, 43: 93-116, (2022).
  • [9] Gümüş, Z. and Demirtaş, M.. Fotovoltaik sistemlerde maksimum güç noktası takibinde kullanılan algoritmaların kısmi gölgeleme koşulları altında karşılaştırılması. Politeknik Dergisi, 24(3): 853-865 (2021).
  • [10] IRENA, Renewable Capacity Statistics 2022, https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (Accessed 03.03.2023)
  • [11] Republic of Turkey Ministry of Energy and Natural Resources, Information Center, Solar Energy https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Accessed 03.03.2023).
  • [12] Gross R., Leach M. and Bauen A., “Progress in renewable energy”, Environment International, 29(1): 105–122, (2003).
  • [13] Prvulovic S., Lambic M., Matic M., Tolmac D., Radovanovic L. and Josimovic L. “Solar energy in Vojvodina (Serbia): Potential, scope of use, and development perspective” Energy Sources, Part B: Economics, Planning, and Policy, 11(12): 1111-1117, (2016).
  • [14] Kose F., Aksoy M. H. and Ozgoren, M., “Experimental investigation of solar/wind hybrid system for irrigation in Konya, Turkey”, Thermal Science, 23(1): 4129–4139, (2019).
  • [15] Basaran S. T., Dogru A. O., Balcik F. B., Ulugtekin N. N., Goksel C. and Sozen, S. “Assessment of renewable energy potential and policy in Turkey–Toward the acquisition period in European Union”, Environmental Science & Policy, 46: 82-94, (2015).
  • [16] Ertekin C., Kulcu R. and Evrendilek F. “Techno-economic analysis of solar water heating systems in Turkey”, Sensors, 8(2): 1252-1277, (2008).
  • [17] GEPA, Republic of Turkey Ministry of Energy and Natural Resources https://gepa.enerji.gov.tr/MyCalculator/ (Accessed 03.03.2023).
  • [18] Abuşka M., Akgül M. B. ve Altıntaş V., “Yutucu plaka üzerine konik yayların yerleştirildiği güneş enerjili hava kollektörünün bulanık mantık ile modellenmesi”, Politeknik Dergisi, 20(4): 907-914, (2017).
  • [19] Arıcı, N. and Iskender A. “Fotovoltaik Güneş Santrallerinde Şebeke Bağlantı Sorunları ve Çözümleri”, Politeknik Dergisi, 23(1): 215-222, (2020).
  • [20] Keskin V., Khalejan SHPR. and Çıkla R., “Investigation of the Shading Effect on the Performance of a grid-connected PV Plant in Samsun/Turkey”, Journal of Polytechnic, 24(2): 553-563, (2021).
  • [21] Alonso-García M. C., Ruiz J. M. and Herrmann W., “Computer simulation of shading effects in photovoltaic arrays”, Renewable Energy, 31(12): 1986-1993, (2006).
  • [22] Lalwani M., Kothari D. P. and Singh, M., “Investigation of solar photovoltaic simulation softwares”, International Journal of Applied Engineering Research, 1(3): 585-601, (2010).
  • [23] de Souza Silva J. L., Costa T. S., de Melo K. B., Sakô E. Y., Moreira H. S. and Villalva M. G., “A comparative performance of PV power simulation software with an installed PV plant” IEEE international conference on industrial technology (ICIT), 531-535. IEEE (2020).
  • [24] Vashishtha V. K., Yadav A., Kumar A. and Shukla V. K., “An overview of software tools for the photovoltaic industry”, Materials Today: Proceedings, 64(3): 1450-1454, (2022).
  • [25] Aksoy M. H. and Çalık M. K., “Performance investigation of bifacial photovoltaic panels at different ground conditions”, Konya Journal of Engineering Sciences, 10(3): 704-718, (2022).
  • [26] Aksoy M. H., Ciylez I. and Ispir M., “Effect of Azimuth Angle on The Performance of a Small-Scale on-Grid PV System”, Turkish Journal of Nature and Science, 11(4): 42-49, (2022).
  • [27] Aksoy M. H., Ispir M. and Bakirhan M., “Analysis of the azimuth angles of a medium-scale PV system in non-ideal positions for roof application”, MANAS Journal of Engineering, 11(1): 74-82, (2023).
  • [28] Aksoy M. H. and Ispir M. “Techno-Economic Feasibility of Different Photovoltaic Technologies” Applied Engineering Letters, 8(1): 1-9, (2023).
  • [29] Baqir M. and Channi H. K., “Analysis and design of solar PV system using Pvsyst software”, Materials Today: Proceedings, 48(5): 1332-1338, (2022).
  • [30] Kumar N. M., Kumar M. R., Rejoice P. R. and Mathew M., “Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool”, Energy Procedia, 117: 180-189, (2017).
  • [31] Belmahdi B. and El Bouardi A., “Solar potential assessment using PVsyst software in the northern zone of Morocco”, Procedia Manufacturing, 46: 738-745, (2020).
  • [32] Emziane M. and Al Ali M. “Performance assessment of rooftop PV systems in Abu Dhabi”, Energy and Buildings, 108, 101-105, (2015).
  • [33] Turan O., “Design and Simulation Application of 1 MWp Capacity Rooftop Distributed Solar Power Plant”, Fırat University Journal of Engineering Science, 34(2): 609-626, (2022).
  • [34] Sharma V. and Chandel S. S., “Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India”. Energy, 55: 476-485, (2013).
  • [35] Mermoud A. and Wittmer B., (2014). PVSYST user’s manual. Switzerland, January.
  • [36] Trainer T., “Renewable energy cannot sustain a consumer society”, Springer Science & Business Media, (2007).
  • [37] Kose F., Aksoy M. H. and Ozgoren M., “An assessment of wind energy potential to meet electricity demand and economic feasibility in Konya, Turkey”, International Journal of Green Energy, 11(6): 559-576, (2014).
  • [38] Abdelhady S., “Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)”, Renewable Energy, 168: 332-342, (2021).
  • [39] Aghaei M., Fairbrother A., Gok A., Ahmad S., Kazim S., Lobato K., Oreski G., Reinders A., Schmitz J., Theelen M., Yilmaz P. and Kettle J. “Review of degradation and failure phenomena in photovoltaic modules”, Renewable and Sustainable Energy Reviews, 159: 112160, (2022).
  • [40] The Central Bank of the Turkish Republic, Reeskont ve Avans Faiz Oranları https://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Main+Menu/Temel+Faaliyetler/Para+Politikasi/Reeskont+ve+Avans+Faiz+Oranlari, (Accessed 03.03.2023).
  • [41] EMRA, Energy Market Regulatory Authority, https://www.epdk.gov.tr/ (Accessed 03.03.2023).
  • [42] Han X., Garrison J. and Hug, G. “Techno-economic analysis of PV-battery systems in Switzerland”, Renewable and Sustainable Energy Reviews, 158: 112028, (2022).
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Muharrem Hilmi Aksoy 0000-0002-6509-8112

Murat İspir 0000-0001-5238-6011

Emin Yeşil 0000-0001-8407-002X

Erken Görünüm Tarihi 1 Eylül 2023
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 8 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aksoy, M. H., İspir, M., & Yeşil, E. (2023). Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing. Politeknik Dergisi, 26(4), 1573-1585. https://doi.org/10.2339/politeknik.1260228
AMA Aksoy MH, İspir M, Yeşil E. Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing. Politeknik Dergisi. Aralık 2023;26(4):1573-1585. doi:10.2339/politeknik.1260228
Chicago Aksoy, Muharrem Hilmi, Murat İspir, ve Emin Yeşil. “Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing”. Politeknik Dergisi 26, sy. 4 (Aralık 2023): 1573-85. https://doi.org/10.2339/politeknik.1260228.
EndNote Aksoy MH, İspir M, Yeşil E (01 Aralık 2023) Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing. Politeknik Dergisi 26 4 1573–1585.
IEEE M. H. Aksoy, M. İspir, ve E. Yeşil, “Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing”, Politeknik Dergisi, c. 26, sy. 4, ss. 1573–1585, 2023, doi: 10.2339/politeknik.1260228.
ISNAD Aksoy, Muharrem Hilmi vd. “Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing”. Politeknik Dergisi 26/4 (Aralık 2023), 1573-1585. https://doi.org/10.2339/politeknik.1260228.
JAMA Aksoy MH, İspir M, Yeşil E. Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing. Politeknik Dergisi. 2023;26:1573–1585.
MLA Aksoy, Muharrem Hilmi vd. “Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing”. Politeknik Dergisi, c. 26, sy. 4, 2023, ss. 1573-85, doi:10.2339/politeknik.1260228.
Vancouver Aksoy MH, İspir M, Yeşil E. Impact of Tilt Angle on The Performance of The Photovoltaic Systems for Different Row Spacing. Politeknik Dergisi. 2023;26(4):1573-85.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.