BibTex RIS Kaynak Göster

A Quantum Space and Some Associated Quantum Groups

Yıl 2018, Cilt: 22 Sayı: 2, 464 - 469, 15.08.2018
https://izlik.org/JA23HX89WC

Öz

In the present paper, we first introduce a quantum $n$-space on which the algebra of coordinates is $\eta$-commutative. Further, it is shown that there are  some $\sigma$-twisted derivations acting on this algebra, and the algebra of such derivations is a quantum group. Morever, we show that a bicovariant differential calculus on this space can be constructed by using $\sigma$-twisted derivations. Finally, the quantum Lie algebra is obtained by using this bicovariant differential calculus.

Kaynakça

  • [1] Drinfeld, VG. 1987, Quantum Groups. Amer. Math. Soc. 1987. Proceedings International Congress of Mathematicians, 03-11 August 1986, Berkeley, 798-820.
  • [2] Brzezinski, T. 1993. Remark on bicovariant differential calculi and exterior Hopf algebras. Lett Math Phys. 27 (1993), 287-300.
  • [3] Gurevich, D. Generalized Translation Operators on Lie Groups. Sov J. Cont Math Anal 18 (1983), 57-70.
  • [4] Borowiec, A., Kharchenko, V. 1995. First order optimum calculi. Bull. Soc. Sci. Lett. L 45(1995), 75-88.
  • [5] Hu, N. Quantum Divided Power Algebra, QDerivatives, and Some New Quantum Groups. J Algebra 232 (2000), 507-540.
  • [6] Madore, J. 2000. An Introduction to Noncommutative Differential Geometry and Its Applications. Cambridge, UK: Cambridge University Press.
  • [7] Majid, S. 1995. Foundation of Quantum Group Theory. Cambridge, UK: Cambridge University Press.
  • [8] Manin, Y.I. 1988. Quantum Groups and Noncommutative Geometry. Centre de Reserches Mathematiques, Montreal.
  • [9] Manin, Y.I. 1989. Multiparemetric Quantum Deformation of the General Linear Supergroup. Commu. Math. Phys. 123 (1989), 163-175.
  • [10] Sudbery, A. 1990. Non-commuting Coordinates and Differential Operators. In Proc.Workshop on Quantum Groups, Argogne, 33-51.
  • [11] Woronowicz, S.L. 1989. Differential Calculus on Compact Matrix Pseudogroups. Commun. Math. Phys. 122 (1989), 125-170.
  • [12] Ubriaco, R.M. 1992. Noncommutative Differential Calculus and q-Analysis. J. Phys. A;Math. Gen. 25(1992), 169-173.
  • [13] Watts, P. Differential Geometry on Hopf Algebras and Quantum Groups, Ph.D. Thesis, hepth/9412153v1.
  • [14] Wess, J., Zumino, B. 1990. Covariant Differential Calculus on the Quantum Hyperplane. Nucl. Phys. 18(1990), 302-312.
  • [15] Schüler, A. 1999. Differential Hopf Algebras on Quantum Groups of Type A. J. Algebra 214 (1999), 479-518.
  • [16] Scheunert, M. 1979. Generalized Lie Algebras. J Math Phys 20 (1979), 712-720 .
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Yazarlar

Muttalip Özavşar Bu kişi benim

Yayımlanma Tarihi 15 Ağustos 2018
IZ https://izlik.org/JA23HX89WC
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Özavşar, M. (2018). A Quantum Space and Some Associated Quantum Groups. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 464-469. https://izlik.org/JA23HX89WC
AMA 1.Özavşar M. A Quantum Space and Some Associated Quantum Groups. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(2):464-469. https://izlik.org/JA23HX89WC
Chicago Özavşar, Muttalip. 2018. “A Quantum Space and Some Associated Quantum Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (2): 464-69. https://izlik.org/JA23HX89WC.
EndNote Özavşar M (01 Ağustos 2018) A Quantum Space and Some Associated Quantum Groups. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 464–469.
IEEE [1]M. Özavşar, “A Quantum Space and Some Associated Quantum Groups”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, sy 2, ss. 464–469, Ağu. 2018, [çevrimiçi]. Erişim adresi: https://izlik.org/JA23HX89WC
ISNAD Özavşar, Muttalip. “A Quantum Space and Some Associated Quantum Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (01 Ağustos 2018): 464-469. https://izlik.org/JA23HX89WC.
JAMA 1.Özavşar M. A Quantum Space and Some Associated Quantum Groups. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:464–469.
MLA Özavşar, Muttalip. “A Quantum Space and Some Associated Quantum Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy 2, Ağustos 2018, ss. 464-9, https://izlik.org/JA23HX89WC.
Vancouver 1.Özavşar M. A Quantum Space and Some Associated Quantum Groups. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. [Internet]. 01 Ağustos 2018;22(2):464-9. Erişim adresi: https://izlik.org/JA23HX89WC

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.