Araştırma Makalesi
BibTex RIS Kaynak Göster

Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 26 Sayı: 3, 355 - 365, 20.12.2022
https://doi.org/10.19113/sdufenbed.1054329

Öz

Bu çalışmada Ordu ili ve doğusunda yükseklik (0 m, 450 m, 750 m) ve yağış gradiyentine (Ordu, Trabzon, Rize) bağlı olarak belirlenen örnek parsellerden iki yıllık periyotta genç, olgun ve senesens dönemde toplanan Laurocerasus officinalis M. Roem taksonuna ait yaprak örneklerinde spesifik yaprak alanı (SLA) ve ağırlığı (LMA) değerleri incelenmiştir. Yükseklik gradientine bağlı olarak SLA ve LMA için yapılan üç-yönlü varyans analizi sonucunda yıl-dönem ikili interaksiyonu ve bölge faktörü istatistiksel olarak önemli bulunmuştur. SLA için yapılan Tukey testine göre, 0 m ve 750 m lokaliteleri arasındaki farkın istatistiki olarak önemli olduğu belirlenmiştir. 2019 yılında genç ve olgun dönemlerde, 2020’de ise her üç dönem arasında istatistiki olarak önemli farklılıklar bulunmuştur. LMA’nın Tukey testine göre, 0 m lokalitesinin istatistiki olarak önemli olduğu belirlenmiştir. 2019 yılında genç dönemin, 2020’de ise her üç dönem arasındaki farkın istatistiki olarak önemli olduğu bulunmuştur. Yağış gradientine bağlı olarak SLA ve LMA için yapılan üç-yönlü varyans analizi sonucuna göre yıl-dönem ikili interaksiyonu istatistiksel olarak önemli bulunmuştur. Bununla beraber, SLA ve LMA’nın Tukey testi sonuçlarına göre, 2019 yılında genç dönemin, 2020’de ise her üç dönem arasındaki farkın istatistiki olarak önemli olduğu tespit edilmiştir.

Destekleyen Kurum

Ordu Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

AR-2009

Teşekkür

Bu çalışma Ordu Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi AR-2009 no’lu projenin bir kısmıdır. Katkılarından dolayı teşekkür ederiz.

Kaynakça

  • [1] Yalçın, E. 2018. Ekosistemlerde Yaprağın Ekolojik Fonksiyonları. Black Sea Journal of Engineering and Science, 1(2), 68-82.
  • [2] Luan, Z., Shao, D., Qi, Q., Zhang, Q., Gao, X., Luan, J., Lin, M., Jiang, W. 2021. Variation of Leaf Traits With Altitude in Lonicera caerulea var. edulis (Caprifoliaceae) from Northeastern China. Pakistan Journal of Botany, 53(3), 949-957.
  • [3] Lee, D. W, Oberbauer, S. F, Johnson, P, Krishnapilay, B., Mansor, M., Mohamad, H., Yap, S. K. 2000 Effects of Irradiance and Spectral Quality on Leaf Structure and Function in Seedlings of Two Southeast Asian Hopea (Dipterocarpaceae) Species. American Journal of Botany, 87(4), 447-455.
  • [4] Kwon, B., Kim, H. S., Jeon, J., Yi, M. J. 2016. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea. Forests, 7(10), 215.
  • [5] Sürmen, B. 2021. Ecological Strategies of Terrestrial Plant Species Belonging Two Different Habitats in Kızılırmak Delta (Samsun/TURKEY). Biology Bulletin, 48(6), 800-812.
  • [6] Sellin, A. 2001. Morphological and Stomatal Responses of Norway Spruce Foliage to İrradiance Within a Canopy Depending on Shoot Age. Environmental and Experimental Botany, 45, 115-131.
  • [7] Bilgin, A., Güzel, Ş. 2017. Foliar Resorption and Nutrient Changes in Leaves and Soils of Tilia rubra subsp. caucasica (Linden) Along an Altitudinal Gradient During The Growing Season. Fresenius Environmental Bulletin, 26(2a), 1607-1621.
  • [8] Sürmen, B., Kutbay, H. G., Çakmak, A., Yılmaz, H. 2016. Comparison of Leaf Traits (SLA And LMA) on Different Populations of Alcea apterocarpa. Hacettepe Journal of Biolology and Chemistry, 44(2), 125-131.
  • [9] Jullien, A., Allirand J. M., Mathieu A., Andrieu, B., Ney, B. 2009. Variations in Leaf Mass Per Area According to N Nutrition, Plant Age, and Leaf Position Reflect Ontogenetic Plasticity in Winter Oilseed Rape (Brassica napus L.). Field Crops Research, 114(2), 188-197.
  • [10] Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F. E., Pereira , H. M., Regan, E. C., Schmeller, D. S., Turak, E. 2019. Essential Biodiversity Variables for Mapping and Monitoring Species Populations. Nature Ecology & Evolution, 3, 539–551.
  • [11] Gara, T. W., Rahimzadeh-Bajgiran, P., Darvishzadeh, R. 2021. Forest Leaf Mass Per Area (LMA) Through The Eye of Optical Remote Sensing: A Review and Future Outlook. Remote Sensing, 13(17), 3352.
  • [12] Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J. M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G. M.,Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Goetzenberger, L., Hodgson, J. G., Jackel, A. -K., Kuehn, I., Kunzmann, D., Ozinga, W. A., Roemermann, C., Stadler, M., Schlegelmilch, J., Steendam, H. J., Tackenberg, O., Wilmann, B., Cornelissen, J. H. C., Eriksson, O., Garnier, E., Peco, B., 2008. The LEDA Traitbase: A Database of Life-History Traits of The Northwest European Flora. Journal of Ecology, 96, 1266–1274.
  • [13] Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., Villar, R. 2004. The World-Wide Leaf Economics Spectrum. Nature, 428(6985), 821-827.
  • [14] Zhuang, J., Zhou, L., Wang, Y., Chi, Y. 2021. Nitrogen Allocation Regulates The Relationship Between Maximum Carboxylation Rate and Chlorophyll Content Along The Vertical Gradient Of Subtropical Forest Canopy. Agricultural and Forest Meteorology, 307(3), 1-10.
  • [15] Paź-Dyderska, S., Dyderski, M. K., Nowak, K., Jagodziński, A. M. 2020. On The Sunny Side of The Crown–Quantification of Intra-Canopy SLA Variation Among 179 Taxa. Forest Ecology and Management, 472, 1-8.
  • [16] Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Joseph Wright, S., Sheremet’ev, S. N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M. D., Gorné, L. D. 2016. The Global Spectrum of Plant Form and Function. Nature, 529, 167–171.
  • [17] Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., Jump, A. S. 2017. Tree Mortality Across Biomes is Promoted By Drought İntensity, Lower Wood Density and Higher Specific Leaf Area. Ecology Letters, 20, 539–553.
  • [18] Özbucak, T. B., Kutbay, H. G., Yalçın, S., Kılıç D.D. 2011. Foliar Nitrogen (N), Phosphorus (P) Dynamics and Foliar Resorption of Corylus avellana var. avellana. Ekoloji, 81, 1–7.
  • [19] Tounekti, T., Al-Turki, T. A., Mehdi, M., Khemira, H. 2017. Leaf Functional Trait Variation Associated With Salinity Tolerance in Salvadora Persica. International Journal of Pure and Applied Bioscience, 5(2), 14-21.
  • [20] Xu, M., Zhu, Y., Zhang, S., Feng, Y., Zhang, W., Han, X. 2021. Global Scaling The Leaf Nitrogen and Phosphorus Resorption of Woody Species: Revisiting Some Commonly Held Views. Science of The Total Environment, 788, 1-8.
  • [21] Kılınç, M., Kutbay, H. G., Yalçın, E., Bilgin, A. 2006. Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme Yayıncılık, Ankara, Türkiye, 362 s.
  • [22] Gül, E., Erşahin, S., Dölarslan, M. 2012. Orta-Kuzey Anadolu Yarı-Kurak İklim Koşullarında Topografya, Toprak Özellikleri ve Bitki Kompozisyonu Etkileşimi. Tarım Bilimleri Araştırma Dergisi, 5(2), 56-60.
  • [23] Dölarslan, M., Gül, E. 2015. Yapraklı-Büyükyayla (Çankırı)’nın Vasküler Bitkiler Florası. Ormancılık Dergisi, 11(2), 74-91.
  • [24] Özyavuz, M. 2011. Bitki Örtüsünün Ekolojik Şartlarının Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri ile Analizi, Ganos (Işıklar) Dağı, Tekirdağ. Tekirdağ Ziraat Fakültesi Dergisi, 8(2), 37-48.
  • [25] Koçman, A. 1989. Applied Physical Geography Studies and Investigations on Bozdağlar District in Izmir. Publications of Ege University, Faculty of Literature No:49, Izmir.
  • [26] Stevens, G. C. 1992. The Elevation Gradient in Altitudinal Range: an Extension of Rapoport’s Latitudinal Rule to Altitude. The American Naturalist, 140(6), 893–911.
  • [27] Vetaas, O. R., Grytnes, J. A. 2002. Distribution of Vascular Plant Species Richness and Endemic Richness Along The Himalayan Elevation Gradient in Nepal. Global Ecology & Biogeography, 11, 291-301.
  • [28] Mueller-Dombois, D. 1980. The Ohia Die-Back Phenomenon in The Hawaiian Rain Forest. The Recovery Process in Damaged Ecosystems, 153-161.
  • [29] Vitousek, P. 1982. Nutrient Cycling and Nutrient Use Effenciency. The American Naturalist, 119, 553- 572.
  • [30] Gönüz, A., Özörgücü, B. 1999. An Investigation on The Morphology, Anatomy and Ecology of Origanum onites L.. Turkish Journal of Botany, 23, 19-32.
  • [31] Noitsakis, B., Tsiouvaras, C. 1990. Seasonal Changes in Components of Leaf Water Potential and Leaf Area Growth Rate in Kermes Oak. Oecologia, 11(3), 419-427.
  • [32] Özbucak, T., Polat, G., Akçin, Ö. E., Kutbay, H. G. 2017. The Effects of Elevation on The Morpho-Anatomical and Ecological Traits in Cyclamen coum subsp. coum Mill. Populations in The Central Black Sea Region of Turkey in Contrasting Habitats. Polish Journal of Ecology, 65(2), 211-226.
  • [33] Hürkul, M. M., Köroğlu, A. 2021. Türkiye’de Doğal Olarak Yetişen Bazı Cotoneaster Medik. (Rosaceae) Türlerinin Karşılaştırmalı Morfolojik Özellikleri. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 45(1), 12-33.
  • [34] Davis, P. H. 1965. Flora of Turkey and The East Aegean Islands, Vol. 1- 9, Edinburgh University Press, Edinburgh.
  • [35] Vahapoğlu, B., Altan, E.N., Gülseren, İ. 2018. Karayemiş Meyvesinin Biyoaktif Özellikleri ve Fonksiyonel Gıdalarda Kullanım Potansiyeli. The Journal of Food, 43(5), 751-764.
  • [36] Anonim, 2019. Laurocerasus officinalis. http://www.tubives.com (Erişim tarihi: 08.01.2019).
  • [37] Ayaz, F. A, Kadıoğlu, A., Reunanen, M., Var, M. 1997. Sugar Composition in Fruits of Laurocerasus officinalis Roem. and Its Three Cultivars. Journal of Food Composition and Analysis, 10, 82–86.
  • [38] İslam, A. 2002. ‘Kiraz’ Cherry Laurel (Prunus laurocerasus). New Zealand Journal of Crop and Horticultural Science, 30, 301–302.
  • [39] Kolaylı, S., Küçük, M., Duran, C., Candan, F., Dinçer, B. 2003. Chemical and Antioxidant Properties of Laurocerasus officinalis Roem. (Cherry Laurel) Fruit Grown in The Black Sea Region. Journal Agricultural and Food Chemistry, 51, 7489−7494.
  • [40] Çalışır, S., Aydın, C. 2004. Some Physico-Mechanic Properties of Cherry Laurel (Prunus lauracerasus L.) Fruits. Journal of Food Engineering, 65, 145-150.
  • [41] Çelik, H., İslam, A., Kalkışım, Ö. 2015. Effect of Cutting Time and IBA Application on Rooting of Edible Cherry Laurel (Prunus laurocerasus cv. 'Kiraz') Cuttings. Anadolu Tarım Bilimleri Dergisi, 30(3), 215-220.
  • [42] Ergüney, E., Gülsünoğlu, Z., Fıratlıgil Durmuş, E., Kılıç Akyılmaz, M. 2015. Karayemiş Tozu Fiziksel Özelliklerinin İyileştirilmesi. Akademik Gıda, 13(2), 108-114.
  • [43] Beyhan, Ö. 2010. A Study on Selection of Promising Native Cherry Laurel (Prunus laurocerasus L.) Genotypes From Sakarya, Turkey. The Journal of Animal & Plant Sciences, 20(4), 231-233.
  • [44] İslam, A., Deligöz, H. 2012. Ordu İlinde Karayemiş (Laurocerasus officinalis L.) Seleksiyonu, Akademik Ziraat Dergisi, 1(1), 37-44.
  • [45] Quero, J. L., Villar, R., Marañon, T., Zamora, R. 2006. Interactions of Drought and Shade Effects on Seedlings of Four Quercus Species: Physiological and Structural Leaf Responses. New Phytologist, 170, 819–834.
  • [46] Lopez-Iglesias, B., Olmo, M., Gallardo, A., Villar, R. 2014. Short-Term Effects of Litter from 21 Woody Species on Plant Growth and Root Development. Plant Soil, 381, 177–191.
  • [47] Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., van der Heijden, G. A, Pausas, J. G., Poorter, H. 2003. A Handbook of Protocols for Standardised and Easy Measurement of Plant Functional Traits Worldwide. Australian Journal of Botany, 51, 335-380.
  • [48] Güzel, Ş. 2017. Fırtına Vadisi’nde bazı odunsu taksonların yüksekliğe bağlı makroelement değişimi ve rezorbsiyon. Recep Tayyip Erdoğan Üniversitesi, Fen Bilimleri Enstitüsü Doktora Tezi, 316s, Rize.
  • [49] Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., Starmer, K. P. 2002. Leaf Size, Specific Leaf Area and Microhabitat Distribution of Chaparral Woody Plants: Contrasting Patterns in Species Level and Community Level Analyses. Oecologia, 130, 449-457.
  • [50] Aerts, R., Chapin, F. S. 2000. The Mineral Nutrition of Wild Plants Revisited: A Re-Evaluation of Processes and Patterns. Advances in Ecological Research, 30, 1-67.
  • [51] Liu, J., Zeng, D., Lee, D. K., Fan, Z., Zhong, L. 2008. Leaf Traits and Their Interrelationship of 23 Plant Species in Southeast of Keerqin Sandy Lands, China. Frontiers of Biology in China, 3, 332-337.
  • [52] Kılıç, D., Kutbay, H. G., Özbucak, T. B., Hüseyinova, R. 2010. Foliar Resorption in Quercus petraea subsp. iberica and Arbutus andrache Along an Elevational Gradient. Annals of Forest Science, 67, 213-220.
  • [53] Kılıç, D. D., Kutbay, H. G., Özbucak, T., Hüseyinova, R. 2012. Nitrogen and Phosphorus Resorption in Two Sympatric Deciduous Species Along An Elevation Gradient. Revue d'Ecologie (La Terre et la Vie), 67, 1-14.
  • [54] Bilgin, A., Zeren, Y., Güzel, S. 2016. Foliar N and P Resorption and Nutrient (N, P, C, and S) Contents of Vaccinium arctostaphylos L. and Vaccinium myrtillus L. From East Black Sea Region of Turkey. Turkish Journal of Botany, 40, 137-146.
  • [55] Guo, Q., Li, H., Zhang, W. 2016. Variations in Leaf Functional Traits and Physiological Characteristics of Abies georgei var. smithii Along The Altitude Gradient in The Southeastern Tibetan Plateau. Journal of mountain Science, 13, 1818-1828.
  • [56] Körner, C. 1989. The Nutritional Status of Plants from High Altitudes. Oecologia, 81, 379-391.
  • [57] Doğan, A. 2012. Hedera helix L.’te Yaprak besin elementlerinin değişimi üzerine bir araştırma. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 129s, Samsun.
  • [58] Kılıç, D. D. 2006. Amasya çevresinde bir yükseklik gradiyenti boyunca yayılış gösteren yaprak döken ve dökmeyen iki türde (Quercus petraea (Mattuschka) Liebl. subsp. iberica (Steven ex Bieb.) ve Arbutus andrachne L.) azot ve fosfor rezorbsiyonu. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 169s, Samsun.
  • [59] Lusk, C. H., Reich, P. B., Montgomery, R. A., Eckerly, D. A., Cavender-Bares, J. 2008. Why Are Evergreen Leaves So Contrary About Shade? Trends in Ecology & Evolution. 23, 299-303.
  • [60] Zhao, H. X., Duan, B. L., Lei, Y.B. 2015. Causes for The Unimodal Pattern of Leaf Carbon Isotope Composition in Abies Faxoniana Trees Growing in A Natural Forest Along An Altitudinal Gradient. Journal of Mountain Science, 12, 39–48.
  • [61] Oren, R., Schulze, E. D., Matyssek, R., Zimmermann, R. 1986. Estimating Photosynthetic Rate and Annual Carbon Gain in Conifers from Specific Leaf Weight and Leaf Biomass. Oecologia, 70, 187-193.
  • [62] Vitousek, P. M., Aplet, G., Turner, D., Lockwood, J. J. 1992. The Mauna Loa Environmental Matrix: Foliar and Soil Nutrients. Oecologia, 89, 372-382.
  • [63] Anderson, J. E., Williams, J., Kriedemann, P. E., Austin, M. P., Farquar, G. D. 1996. Correlations Between Carbon İsotope Discrimination and Climate of Native Habitats for Diverse Eucalypt Taxa Growing in a Common Garden. Australian Journal of Plant Physiology, 23, 311-320.
  • [64] Li, Y., Chen, J., Cui, J., Zhao, X., Zhang, T. 2013. Nutrient Resorption in Caragana microphylla Along a Chronosequence of Plantations: Implications for Desertified Land Restoration in North China. Ecological Engineering, 53, 299-305.

Investigation of Some Leaf Traits in Laurocerasus officinalis M. Roem Taxa Along Elevation and Precipitation Gradient

Yıl 2022, Cilt: 26 Sayı: 3, 355 - 365, 20.12.2022
https://doi.org/10.19113/sdufenbed.1054329

Öz

In this study, specific leaf area (SLA) and leaf mass area (LMA) values of the leaf samples of Laurocerasus officinalis M. Roem taxon collected in the young, mature and senescence period in a two-year period from the sample plots determined depending on the altitude (0 m, 450 m, 750 m) and precipitation gradient (Ordu, Trabzon, Rize) in the province and east of Ordu were examined. As a result of the three-way analysis of variance for SLA and LMA, depending on the altitude gradient, the year-season bilateral interaction and region factor were found to be statistically significant. According to the Tukey test for SLA, the difference between 0 m and 750 m localities was found to be statistically significant. Statistically significant differences were found between young and mature periods in 2019, and among all three seasons in 2020. According to the Tukey test of the LMA, the 0 locality was determined to be statistically significant. It has been found that the statistically significant difference between the young season in 2019 and among all three seasons in 2020. According to the results of three-way analysis of variance for SLA and LMA, depending on the precipitation gradient, year-season bilateral interaction was found to be statistically significant. However, according to the Tukey test results of SLA and LMA, the young season in 2019, all seasons in 2020 was determined to be statistically significant.

Proje Numarası

AR-2009

Kaynakça

  • [1] Yalçın, E. 2018. Ekosistemlerde Yaprağın Ekolojik Fonksiyonları. Black Sea Journal of Engineering and Science, 1(2), 68-82.
  • [2] Luan, Z., Shao, D., Qi, Q., Zhang, Q., Gao, X., Luan, J., Lin, M., Jiang, W. 2021. Variation of Leaf Traits With Altitude in Lonicera caerulea var. edulis (Caprifoliaceae) from Northeastern China. Pakistan Journal of Botany, 53(3), 949-957.
  • [3] Lee, D. W, Oberbauer, S. F, Johnson, P, Krishnapilay, B., Mansor, M., Mohamad, H., Yap, S. K. 2000 Effects of Irradiance and Spectral Quality on Leaf Structure and Function in Seedlings of Two Southeast Asian Hopea (Dipterocarpaceae) Species. American Journal of Botany, 87(4), 447-455.
  • [4] Kwon, B., Kim, H. S., Jeon, J., Yi, M. J. 2016. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea. Forests, 7(10), 215.
  • [5] Sürmen, B. 2021. Ecological Strategies of Terrestrial Plant Species Belonging Two Different Habitats in Kızılırmak Delta (Samsun/TURKEY). Biology Bulletin, 48(6), 800-812.
  • [6] Sellin, A. 2001. Morphological and Stomatal Responses of Norway Spruce Foliage to İrradiance Within a Canopy Depending on Shoot Age. Environmental and Experimental Botany, 45, 115-131.
  • [7] Bilgin, A., Güzel, Ş. 2017. Foliar Resorption and Nutrient Changes in Leaves and Soils of Tilia rubra subsp. caucasica (Linden) Along an Altitudinal Gradient During The Growing Season. Fresenius Environmental Bulletin, 26(2a), 1607-1621.
  • [8] Sürmen, B., Kutbay, H. G., Çakmak, A., Yılmaz, H. 2016. Comparison of Leaf Traits (SLA And LMA) on Different Populations of Alcea apterocarpa. Hacettepe Journal of Biolology and Chemistry, 44(2), 125-131.
  • [9] Jullien, A., Allirand J. M., Mathieu A., Andrieu, B., Ney, B. 2009. Variations in Leaf Mass Per Area According to N Nutrition, Plant Age, and Leaf Position Reflect Ontogenetic Plasticity in Winter Oilseed Rape (Brassica napus L.). Field Crops Research, 114(2), 188-197.
  • [10] Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F. E., Pereira , H. M., Regan, E. C., Schmeller, D. S., Turak, E. 2019. Essential Biodiversity Variables for Mapping and Monitoring Species Populations. Nature Ecology & Evolution, 3, 539–551.
  • [11] Gara, T. W., Rahimzadeh-Bajgiran, P., Darvishzadeh, R. 2021. Forest Leaf Mass Per Area (LMA) Through The Eye of Optical Remote Sensing: A Review and Future Outlook. Remote Sensing, 13(17), 3352.
  • [12] Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J. M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G. M.,Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Goetzenberger, L., Hodgson, J. G., Jackel, A. -K., Kuehn, I., Kunzmann, D., Ozinga, W. A., Roemermann, C., Stadler, M., Schlegelmilch, J., Steendam, H. J., Tackenberg, O., Wilmann, B., Cornelissen, J. H. C., Eriksson, O., Garnier, E., Peco, B., 2008. The LEDA Traitbase: A Database of Life-History Traits of The Northwest European Flora. Journal of Ecology, 96, 1266–1274.
  • [13] Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., Villar, R. 2004. The World-Wide Leaf Economics Spectrum. Nature, 428(6985), 821-827.
  • [14] Zhuang, J., Zhou, L., Wang, Y., Chi, Y. 2021. Nitrogen Allocation Regulates The Relationship Between Maximum Carboxylation Rate and Chlorophyll Content Along The Vertical Gradient Of Subtropical Forest Canopy. Agricultural and Forest Meteorology, 307(3), 1-10.
  • [15] Paź-Dyderska, S., Dyderski, M. K., Nowak, K., Jagodziński, A. M. 2020. On The Sunny Side of The Crown–Quantification of Intra-Canopy SLA Variation Among 179 Taxa. Forest Ecology and Management, 472, 1-8.
  • [16] Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Joseph Wright, S., Sheremet’ev, S. N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M. D., Gorné, L. D. 2016. The Global Spectrum of Plant Form and Function. Nature, 529, 167–171.
  • [17] Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., Jump, A. S. 2017. Tree Mortality Across Biomes is Promoted By Drought İntensity, Lower Wood Density and Higher Specific Leaf Area. Ecology Letters, 20, 539–553.
  • [18] Özbucak, T. B., Kutbay, H. G., Yalçın, S., Kılıç D.D. 2011. Foliar Nitrogen (N), Phosphorus (P) Dynamics and Foliar Resorption of Corylus avellana var. avellana. Ekoloji, 81, 1–7.
  • [19] Tounekti, T., Al-Turki, T. A., Mehdi, M., Khemira, H. 2017. Leaf Functional Trait Variation Associated With Salinity Tolerance in Salvadora Persica. International Journal of Pure and Applied Bioscience, 5(2), 14-21.
  • [20] Xu, M., Zhu, Y., Zhang, S., Feng, Y., Zhang, W., Han, X. 2021. Global Scaling The Leaf Nitrogen and Phosphorus Resorption of Woody Species: Revisiting Some Commonly Held Views. Science of The Total Environment, 788, 1-8.
  • [21] Kılınç, M., Kutbay, H. G., Yalçın, E., Bilgin, A. 2006. Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme Yayıncılık, Ankara, Türkiye, 362 s.
  • [22] Gül, E., Erşahin, S., Dölarslan, M. 2012. Orta-Kuzey Anadolu Yarı-Kurak İklim Koşullarında Topografya, Toprak Özellikleri ve Bitki Kompozisyonu Etkileşimi. Tarım Bilimleri Araştırma Dergisi, 5(2), 56-60.
  • [23] Dölarslan, M., Gül, E. 2015. Yapraklı-Büyükyayla (Çankırı)’nın Vasküler Bitkiler Florası. Ormancılık Dergisi, 11(2), 74-91.
  • [24] Özyavuz, M. 2011. Bitki Örtüsünün Ekolojik Şartlarının Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri ile Analizi, Ganos (Işıklar) Dağı, Tekirdağ. Tekirdağ Ziraat Fakültesi Dergisi, 8(2), 37-48.
  • [25] Koçman, A. 1989. Applied Physical Geography Studies and Investigations on Bozdağlar District in Izmir. Publications of Ege University, Faculty of Literature No:49, Izmir.
  • [26] Stevens, G. C. 1992. The Elevation Gradient in Altitudinal Range: an Extension of Rapoport’s Latitudinal Rule to Altitude. The American Naturalist, 140(6), 893–911.
  • [27] Vetaas, O. R., Grytnes, J. A. 2002. Distribution of Vascular Plant Species Richness and Endemic Richness Along The Himalayan Elevation Gradient in Nepal. Global Ecology & Biogeography, 11, 291-301.
  • [28] Mueller-Dombois, D. 1980. The Ohia Die-Back Phenomenon in The Hawaiian Rain Forest. The Recovery Process in Damaged Ecosystems, 153-161.
  • [29] Vitousek, P. 1982. Nutrient Cycling and Nutrient Use Effenciency. The American Naturalist, 119, 553- 572.
  • [30] Gönüz, A., Özörgücü, B. 1999. An Investigation on The Morphology, Anatomy and Ecology of Origanum onites L.. Turkish Journal of Botany, 23, 19-32.
  • [31] Noitsakis, B., Tsiouvaras, C. 1990. Seasonal Changes in Components of Leaf Water Potential and Leaf Area Growth Rate in Kermes Oak. Oecologia, 11(3), 419-427.
  • [32] Özbucak, T., Polat, G., Akçin, Ö. E., Kutbay, H. G. 2017. The Effects of Elevation on The Morpho-Anatomical and Ecological Traits in Cyclamen coum subsp. coum Mill. Populations in The Central Black Sea Region of Turkey in Contrasting Habitats. Polish Journal of Ecology, 65(2), 211-226.
  • [33] Hürkul, M. M., Köroğlu, A. 2021. Türkiye’de Doğal Olarak Yetişen Bazı Cotoneaster Medik. (Rosaceae) Türlerinin Karşılaştırmalı Morfolojik Özellikleri. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 45(1), 12-33.
  • [34] Davis, P. H. 1965. Flora of Turkey and The East Aegean Islands, Vol. 1- 9, Edinburgh University Press, Edinburgh.
  • [35] Vahapoğlu, B., Altan, E.N., Gülseren, İ. 2018. Karayemiş Meyvesinin Biyoaktif Özellikleri ve Fonksiyonel Gıdalarda Kullanım Potansiyeli. The Journal of Food, 43(5), 751-764.
  • [36] Anonim, 2019. Laurocerasus officinalis. http://www.tubives.com (Erişim tarihi: 08.01.2019).
  • [37] Ayaz, F. A, Kadıoğlu, A., Reunanen, M., Var, M. 1997. Sugar Composition in Fruits of Laurocerasus officinalis Roem. and Its Three Cultivars. Journal of Food Composition and Analysis, 10, 82–86.
  • [38] İslam, A. 2002. ‘Kiraz’ Cherry Laurel (Prunus laurocerasus). New Zealand Journal of Crop and Horticultural Science, 30, 301–302.
  • [39] Kolaylı, S., Küçük, M., Duran, C., Candan, F., Dinçer, B. 2003. Chemical and Antioxidant Properties of Laurocerasus officinalis Roem. (Cherry Laurel) Fruit Grown in The Black Sea Region. Journal Agricultural and Food Chemistry, 51, 7489−7494.
  • [40] Çalışır, S., Aydın, C. 2004. Some Physico-Mechanic Properties of Cherry Laurel (Prunus lauracerasus L.) Fruits. Journal of Food Engineering, 65, 145-150.
  • [41] Çelik, H., İslam, A., Kalkışım, Ö. 2015. Effect of Cutting Time and IBA Application on Rooting of Edible Cherry Laurel (Prunus laurocerasus cv. 'Kiraz') Cuttings. Anadolu Tarım Bilimleri Dergisi, 30(3), 215-220.
  • [42] Ergüney, E., Gülsünoğlu, Z., Fıratlıgil Durmuş, E., Kılıç Akyılmaz, M. 2015. Karayemiş Tozu Fiziksel Özelliklerinin İyileştirilmesi. Akademik Gıda, 13(2), 108-114.
  • [43] Beyhan, Ö. 2010. A Study on Selection of Promising Native Cherry Laurel (Prunus laurocerasus L.) Genotypes From Sakarya, Turkey. The Journal of Animal & Plant Sciences, 20(4), 231-233.
  • [44] İslam, A., Deligöz, H. 2012. Ordu İlinde Karayemiş (Laurocerasus officinalis L.) Seleksiyonu, Akademik Ziraat Dergisi, 1(1), 37-44.
  • [45] Quero, J. L., Villar, R., Marañon, T., Zamora, R. 2006. Interactions of Drought and Shade Effects on Seedlings of Four Quercus Species: Physiological and Structural Leaf Responses. New Phytologist, 170, 819–834.
  • [46] Lopez-Iglesias, B., Olmo, M., Gallardo, A., Villar, R. 2014. Short-Term Effects of Litter from 21 Woody Species on Plant Growth and Root Development. Plant Soil, 381, 177–191.
  • [47] Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., van der Heijden, G. A, Pausas, J. G., Poorter, H. 2003. A Handbook of Protocols for Standardised and Easy Measurement of Plant Functional Traits Worldwide. Australian Journal of Botany, 51, 335-380.
  • [48] Güzel, Ş. 2017. Fırtına Vadisi’nde bazı odunsu taksonların yüksekliğe bağlı makroelement değişimi ve rezorbsiyon. Recep Tayyip Erdoğan Üniversitesi, Fen Bilimleri Enstitüsü Doktora Tezi, 316s, Rize.
  • [49] Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., Starmer, K. P. 2002. Leaf Size, Specific Leaf Area and Microhabitat Distribution of Chaparral Woody Plants: Contrasting Patterns in Species Level and Community Level Analyses. Oecologia, 130, 449-457.
  • [50] Aerts, R., Chapin, F. S. 2000. The Mineral Nutrition of Wild Plants Revisited: A Re-Evaluation of Processes and Patterns. Advances in Ecological Research, 30, 1-67.
  • [51] Liu, J., Zeng, D., Lee, D. K., Fan, Z., Zhong, L. 2008. Leaf Traits and Their Interrelationship of 23 Plant Species in Southeast of Keerqin Sandy Lands, China. Frontiers of Biology in China, 3, 332-337.
  • [52] Kılıç, D., Kutbay, H. G., Özbucak, T. B., Hüseyinova, R. 2010. Foliar Resorption in Quercus petraea subsp. iberica and Arbutus andrache Along an Elevational Gradient. Annals of Forest Science, 67, 213-220.
  • [53] Kılıç, D. D., Kutbay, H. G., Özbucak, T., Hüseyinova, R. 2012. Nitrogen and Phosphorus Resorption in Two Sympatric Deciduous Species Along An Elevation Gradient. Revue d'Ecologie (La Terre et la Vie), 67, 1-14.
  • [54] Bilgin, A., Zeren, Y., Güzel, S. 2016. Foliar N and P Resorption and Nutrient (N, P, C, and S) Contents of Vaccinium arctostaphylos L. and Vaccinium myrtillus L. From East Black Sea Region of Turkey. Turkish Journal of Botany, 40, 137-146.
  • [55] Guo, Q., Li, H., Zhang, W. 2016. Variations in Leaf Functional Traits and Physiological Characteristics of Abies georgei var. smithii Along The Altitude Gradient in The Southeastern Tibetan Plateau. Journal of mountain Science, 13, 1818-1828.
  • [56] Körner, C. 1989. The Nutritional Status of Plants from High Altitudes. Oecologia, 81, 379-391.
  • [57] Doğan, A. 2012. Hedera helix L.’te Yaprak besin elementlerinin değişimi üzerine bir araştırma. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 129s, Samsun.
  • [58] Kılıç, D. D. 2006. Amasya çevresinde bir yükseklik gradiyenti boyunca yayılış gösteren yaprak döken ve dökmeyen iki türde (Quercus petraea (Mattuschka) Liebl. subsp. iberica (Steven ex Bieb.) ve Arbutus andrachne L.) azot ve fosfor rezorbsiyonu. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 169s, Samsun.
  • [59] Lusk, C. H., Reich, P. B., Montgomery, R. A., Eckerly, D. A., Cavender-Bares, J. 2008. Why Are Evergreen Leaves So Contrary About Shade? Trends in Ecology & Evolution. 23, 299-303.
  • [60] Zhao, H. X., Duan, B. L., Lei, Y.B. 2015. Causes for The Unimodal Pattern of Leaf Carbon Isotope Composition in Abies Faxoniana Trees Growing in A Natural Forest Along An Altitudinal Gradient. Journal of Mountain Science, 12, 39–48.
  • [61] Oren, R., Schulze, E. D., Matyssek, R., Zimmermann, R. 1986. Estimating Photosynthetic Rate and Annual Carbon Gain in Conifers from Specific Leaf Weight and Leaf Biomass. Oecologia, 70, 187-193.
  • [62] Vitousek, P. M., Aplet, G., Turner, D., Lockwood, J. J. 1992. The Mauna Loa Environmental Matrix: Foliar and Soil Nutrients. Oecologia, 89, 372-382.
  • [63] Anderson, J. E., Williams, J., Kriedemann, P. E., Austin, M. P., Farquar, G. D. 1996. Correlations Between Carbon İsotope Discrimination and Climate of Native Habitats for Diverse Eucalypt Taxa Growing in a Common Garden. Australian Journal of Plant Physiology, 23, 311-320.
  • [64] Li, Y., Chen, J., Cui, J., Zhao, X., Zhang, T. 2013. Nutrient Resorption in Caragana microphylla Along a Chronosequence of Plantations: Implications for Desertified Land Restoration in North China. Ecological Engineering, 53, 299-305.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Özbucak 0000-0002-4784-3537

Gülaycan Polat Keskin Bu kişi benim 0000-0001-6255-5456

Proje Numarası AR-2009
Yayımlanma Tarihi 20 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 3

Kaynak Göster

APA Özbucak, T., & Polat Keskin, G. (2022). Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(3), 355-365. https://doi.org/10.19113/sdufenbed.1054329
AMA Özbucak T, Polat Keskin G. Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi. SDÜ Fen Bil Enst Der. Aralık 2022;26(3):355-365. doi:10.19113/sdufenbed.1054329
Chicago Özbucak, Tuğba, ve Gülaycan Polat Keskin. “Laurocerasus Officinalis M. Roem Taksonunda Yükseklik Ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 3 (Aralık 2022): 355-65. https://doi.org/10.19113/sdufenbed.1054329.
EndNote Özbucak T, Polat Keskin G (01 Aralık 2022) Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 3 355–365.
IEEE T. Özbucak ve G. Polat Keskin, “Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi”, SDÜ Fen Bil Enst Der, c. 26, sy. 3, ss. 355–365, 2022, doi: 10.19113/sdufenbed.1054329.
ISNAD Özbucak, Tuğba - Polat Keskin, Gülaycan. “Laurocerasus Officinalis M. Roem Taksonunda Yükseklik Ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/3 (Aralık 2022), 355-365. https://doi.org/10.19113/sdufenbed.1054329.
JAMA Özbucak T, Polat Keskin G. Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi. SDÜ Fen Bil Enst Der. 2022;26:355–365.
MLA Özbucak, Tuğba ve Gülaycan Polat Keskin. “Laurocerasus Officinalis M. Roem Taksonunda Yükseklik Ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 3, 2022, ss. 355-6, doi:10.19113/sdufenbed.1054329.
Vancouver Özbucak T, Polat Keskin G. Laurocerasus officinalis M. Roem Taksonunda Yükseklik ve Yağış Gradiyenti Boyunca Bazı Yaprak Özelliklerinin İncelenmesi. SDÜ Fen Bil Enst Der. 2022;26(3):355-6.

e-ISSN: 1308-6529