Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Micrococcus luteus AR-72 applied with rock phosphate and TSP fertilizer on some soil biological properties, NO3 and available P content of soil

Yıl 2020, Cilt: 8 Sayı: 2, 157 - 166, 30.12.2020
https://doi.org/10.33409/tbbbd.848527

Öz

In this study, effects of Micrococcus luteus inoculation with rock phosphate and TSP (triple super phosphate) fertilizers on available P, NO3-N contents and some biological soil properties (soil respiration, microbial biomass C, dehydrogenase and phosphatase activities) were researched. Considering the phosphorus fixation capacity of the soil used as a material in the experiment and available P content in the soil, trial subjects were established according to meeting the phosphorus from rock phosphate and TSP by 0, 25, 50, 75 and 100 % that should be given to the soil and specific to wheat and inoculation of the soil with Micrococcus luteus AR-72 and the noninoculation. Pots formed according to the trial subjects were left for 120 days incubation at 250C. During the incubation experiment, 4 soil samplings were done in 30-day periods. In the soil samples taken from the pots during each incubation period, values of available P and NO3-N and soil respiration (SR), microbial biomass C (MBC), dehydrogenase (DHA) and alkaline phosphatase (FA) activities were determined. According to the results, it was determined that Micrococcus luteus AR-72 inoculation with both rock phosphate and TSP increased the available P and NO3-N contents of the soils more than the non-inoculation applications. On the other hand, it was determined that the inoculation with TSP fertilizer increased the available P and NO3-N contents more than the inoculation with rock phosphate. Also, inoculation of Micrococcus luteus AR-72 with both rock phosphate and TSP increased the MBC, TS, DHA and FA contents of the soils more than the non-inoculation applications. Inoculation of Micrococcus luteus AR-72 with rock phosphate fertilizer increased MBC, TS and DHA contents of the soils more than TSP, but FA values were found higher in inoculation with TSP fertilizer.

Kaynakça

  • Adnan M, Shah Z, Sharif M, Rahman H, 2018. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environmental Science and Pollution Research 25(10), 9501-9509.
  • Ahemad M, Kibret M, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University 26(1), 1–20.
  • Amador JA, Glucksman AM, Lyons JB, Görres JH, 1997. Spatial distribution of soil phosphatase activity within a riparian forest1. Soil Science 162(11), 808-825.
  • Anderson JPE, 1982. Soil respiration. In: Methods of soil analysis, Part 2, Chemical and microbiological properties. Page, A. L. (Ed.) ASA - SSSA, Madison, Wisconsin, USA. pp. 831-871.
  • Anderson JPE, Domsch KH, 1978. A physiological methot for the quantative measurement of microbial biomass in soil, Soil Biology and Biochemistry 10: 215-221.
  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Llande R, 2004. Potential of Rhizobium and Bradyrhizobioum species as plant growth promoting rhizobacteria on non-legumes: effect on radishes. Plant and Soil 204:57–67.
  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN, 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology 3(2), 97-110.
  • Benefield CB, Howard PJA, Howard DM, 1977. The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry 9(1), 67–70.
  • Bolton H, Elliott LF, Papendick RI, Bezdicek DF, 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biology and Biochemistry 17(3), 297–302.
  • Coleman JE, 1992. Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics & Biomolecular Structure 21, 441-483.
  • Çakmakçı R, Dönmez MF, Erdoğan Ü, 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry 31(3), 189-199.
  • Dastager SG, Deepa CK, Pandey A, 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Pysiology and Biochemistry 48(12), 987-992.
  • Dimkpa C, Weinand T, Ash F, 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694.
  • Dinesh R, Srinivasan V, Hamza S, Manjusha A, 2010. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresource Technology 101(12), 4697-4702.
  • Dutta SC, Neog B, 2015. Effects of AM Fungi and Plant Growth-promoting Rhizobacteria on Enzymatic Activities of Soil under Turmeric (Curcuma longa L.) Cultivation. Journal of the Indian Society of Soil Science 63(4), 442-448.
  • Ekundayo FO, 2010. Comparative influence of benomyl on rhizosphere and non-rhizosphere bacteria of cowpea and their ability to solubilise phosphate. Journal of Soil Science and Environmental Management 1(9), 234-242.
  • El-Azeem A, Mehana T, Shabayek A, 2007. Response of Faba bean (Vicia faba L.) to inoculation with plant growth-promoting rhizobacteria. Catrina: The International Journal of Environmental Sciences 2(1), 67-75.
  • Hajnal-Jafari T, Jarak M, Đurić S, Stamenov D, 2012. Effect of co-inoculation with different groups of beneficial microorganisms on the microbiological properties of soil and yield of maize (Zea mays L.). Ratarstvo i povrtarstvo 49(2), 183-188.
  • Haktanır K, Arcak S, 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş).
  • Hridya AC, Byju G, Misra RS, 2014. Effects of microbial inoculations on soil chemical, biochemical and microbial biomass carbon of cassava (Manihot esculenta Crantz) growing Vertisols. Archives of Agronomy and Soil Science 60(2), 239-249.
  • Islam M, Sultana T, Joe MM, Yim W, Cho JC, Sa T, 2013. Nitrogen-fixing bacteria with multiple plant growth promoting activities enhances growth of tomato and red pepper. Journal of Basic Microbiology 53(12), 1004–1015.
  • Kacar B, 1994. Bitki ve toprağın kimyasal analizleri: III. toprak analizleri, Ankara üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara No:3.
  • Kızılkaya R, 2008. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecological Engineering 33(2), 150-156.
  • Kim KY, Jordan D, McDonald GA, 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry 30(8-9), 995-1003.
  • Kpomblekou K, Tabatabai MA. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science 158:442-453.
  • Kumar A, Kumar A, Devi S, Patil S, Payal C, Negi S, 2012. Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Research in Science and Technology 4(2), 1-5.
  • Masciandaro G, Ceccanti B, Ronchi V, Bauer C, 2000. Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biology and Fertility of Soils 32(6), 479–483.
  • Namlı A, Mahmood A, Sevilir B, Özkır E, 2017. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eurasian Journal of Soil Science 6(3), 249.
  • Nannipieri P, Grego S, Ceccanti B, 1990. Ecological significance of the biological activity in soil. In: Soil Biochemistry. Bollag J (Ed.). Volume 6, Taylor and Francis.
  • Nannipieri P, Giagnoni L, Landi L, Renella G, 2011. Role of phosphatase enzymes in soil. In: Phosphorus in action. Bünemann E, Oberson A, Frossard E (Eds.). Springer. p. 215–43.
  • Ndung’u-Magiroi KW, Herrmann L, Okalebo JR, Othieno CO, Pypers P, Lesueur D, 2012. Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Annals of Microbiology 62(3), 897-904.
  • Obbard JP, (2001). Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Applied Geochemistry 16(11-12), 1405-1411.
  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R, 2009. Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant and Soil 320(1-2), 169-179.
  • Pascual JA, Garcia G, Hernandez T, Moreno JL, Ros M, 2000. Soil microbial activity as a biomarker of degradation and remediationprocesses. Soil Biology and Biochemistry 32: 1877–1883.
  • Peper IL, Gerba CP, Brendecke JW, 1995. Enviromental Microbiology: A Laboratory Manual. Academic Press, New York, 175p.
  • Ponmurugan P, Gopi C, 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology 5(4), 348-350.
  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP, 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology 73, 87-96.
  • Rashid M, Khalil S, Ayub N, Alam S, Latif F, 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences 7(2), 187-196.
  • Raza FA, Faisal M, 2013. Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Australian Journal of Crop Science 7(11), 1693-1698.
  • Rossel D, Tarradellas J, 1991. Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environmental Toxicology and Water Quality 6(1), 17–33.
  • Schloter M, Dilly O, Munch JC, 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment 98(1-3), 255-262.
  • Skujins J, 1976 Extracellular enzymes in soil. CRC Critical Reviews in Microbiology 4: 383–421.
  • Singh M, Awasthi A, Soni SK, Singh R, Verma RK, Kalra A, 2015. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Scientific Reports 5, 15500.
  • Smith JL, Paul EA, 1990. The significance of soil microbial biomass estimations. In: Soil Biochemistry. Bollag JM, Stotzky G (Eds.). Volume 6, Marcel Dekker Inc. pp. 357-396.
  • Stephen J, Shabanamol S, Rishad KS, Jisha MS, 2015. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp.(MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech, 5(5), 831-837.
  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS, 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PloS one, 13(9), e0204408.
  • Tabatabai MA, 1994. Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, Madison, WI, pp 775–833.
  • Tabatabai MA, Bremner JM, 1969. Use of p-nitrophenyl phosphate forassay of soil phosphatase activity, Soil Biology and Biochemistry 1, 301-307.
  • Trevors JT, 1984. Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biology and Biochemistry 16(6), 673-674.
  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C, 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4, 356.
  • Vendan RT, Yu YJ, Lee SH, Rhee YH, 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology 48(5), 559-565.
  • Wan JH, Wong MH, 2004. Effects of earthworm activity and P‐solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science 167(2), 209-213.
  • Yurtsever N, 1984. Deneysel istatistik metotları. Tarım Orman ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü.

Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72'nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi

Yıl 2020, Cilt: 8 Sayı: 2, 157 - 166, 30.12.2020
https://doi.org/10.33409/tbbbd.848527

Öz

Bu çalışmada, kaya fosfat ve TSP (triple süper fosfat) gübresi ile beraber yapılan Micrococcus luteus aşılamasının toprakların bazı alınabilir P ve NO3-N içerikleri ile toprakların biyolojik özellikleri (toprak solunumu, mikrobiyal biyomas C, dehidrogenaz, fosfataz aktivitesi) üzerine olan etkileri araştırılmıştır. Denemede materyal olarak kullanılan toprağın fosfor fiksasyon kapasitesi ve topraktaki alınabilir P içeriği dikkate alınarak, buğday bitkisi özelinde toprağa verilmesi gereken fosforun sırasıyla % 0, 25, 50, 75 ve 100’ün kaya fosfat ve TSP’den karşılanması ve Micrococcus luteus AR-72 ile toprağın aşılanması ve aşılama yapılmamasına göre deneme konuları oluşturulmuştur. Deneme konularına göre oluşturulan saksılar 25 0C’de 120 gün inkübasyona bırakılmıştır. İnkübasyon denemesi boyunca 30’ar günlük periyodlarda 4 toprak örneklemesi yapılmıştır. Her bir inkübasyon döneminde saksılardan alınan toprak örneklerinde alınabilir P ve NO3-N ile toprak solunumu (TS), mikrobiyal biyomas C (MBC), dehidrogenaz (DHA) ve alkalen fosfataz (FA) aktivitesi değerleri belirlenmiştir. Elde edilen sonuçlara göre, hem kaya fosfat hem de TSP ile beraber yapılan Micrococcus luteus AR-72, aşılamanın yapılmadığı uygulamalara göre toprakların alınabilir P ve NO3-N içeriğini daha fazla artırdığı saptanmıştır. Bununla beraber TSP gübresi ile beraber yapılan aşılamanın ise kaya fosfata göre alınabilir P ve NO3-N içeriğini daha fazla artırdığı belirlenmiştir. Ayrıca hem kaya fosfat hem de TSP ile beraber yapılan Micrococcus luteus AR-72 aşılaması, aşılamanın yapılmadığı uygulamalara göre toprakların MBC, TS, DHA ve FA içeriğini daha fazla artırmış, kaya fosfat gübresi ile beraber yapılan aşılama TSP’ye göre toprakların MBC, TS ve DHA içeriğinde daha fazla artış sağlamış ancak FA değerleri TSP gübresi ile beraber yapılan aşılamada daha yüksek bulunmuştur.

Kaynakça

  • Adnan M, Shah Z, Sharif M, Rahman H, 2018. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environmental Science and Pollution Research 25(10), 9501-9509.
  • Ahemad M, Kibret M, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University 26(1), 1–20.
  • Amador JA, Glucksman AM, Lyons JB, Görres JH, 1997. Spatial distribution of soil phosphatase activity within a riparian forest1. Soil Science 162(11), 808-825.
  • Anderson JPE, 1982. Soil respiration. In: Methods of soil analysis, Part 2, Chemical and microbiological properties. Page, A. L. (Ed.) ASA - SSSA, Madison, Wisconsin, USA. pp. 831-871.
  • Anderson JPE, Domsch KH, 1978. A physiological methot for the quantative measurement of microbial biomass in soil, Soil Biology and Biochemistry 10: 215-221.
  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Llande R, 2004. Potential of Rhizobium and Bradyrhizobioum species as plant growth promoting rhizobacteria on non-legumes: effect on radishes. Plant and Soil 204:57–67.
  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN, 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology 3(2), 97-110.
  • Benefield CB, Howard PJA, Howard DM, 1977. The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry 9(1), 67–70.
  • Bolton H, Elliott LF, Papendick RI, Bezdicek DF, 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biology and Biochemistry 17(3), 297–302.
  • Coleman JE, 1992. Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics & Biomolecular Structure 21, 441-483.
  • Çakmakçı R, Dönmez MF, Erdoğan Ü, 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry 31(3), 189-199.
  • Dastager SG, Deepa CK, Pandey A, 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Pysiology and Biochemistry 48(12), 987-992.
  • Dimkpa C, Weinand T, Ash F, 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694.
  • Dinesh R, Srinivasan V, Hamza S, Manjusha A, 2010. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresource Technology 101(12), 4697-4702.
  • Dutta SC, Neog B, 2015. Effects of AM Fungi and Plant Growth-promoting Rhizobacteria on Enzymatic Activities of Soil under Turmeric (Curcuma longa L.) Cultivation. Journal of the Indian Society of Soil Science 63(4), 442-448.
  • Ekundayo FO, 2010. Comparative influence of benomyl on rhizosphere and non-rhizosphere bacteria of cowpea and their ability to solubilise phosphate. Journal of Soil Science and Environmental Management 1(9), 234-242.
  • El-Azeem A, Mehana T, Shabayek A, 2007. Response of Faba bean (Vicia faba L.) to inoculation with plant growth-promoting rhizobacteria. Catrina: The International Journal of Environmental Sciences 2(1), 67-75.
  • Hajnal-Jafari T, Jarak M, Đurić S, Stamenov D, 2012. Effect of co-inoculation with different groups of beneficial microorganisms on the microbiological properties of soil and yield of maize (Zea mays L.). Ratarstvo i povrtarstvo 49(2), 183-188.
  • Haktanır K, Arcak S, 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş).
  • Hridya AC, Byju G, Misra RS, 2014. Effects of microbial inoculations on soil chemical, biochemical and microbial biomass carbon of cassava (Manihot esculenta Crantz) growing Vertisols. Archives of Agronomy and Soil Science 60(2), 239-249.
  • Islam M, Sultana T, Joe MM, Yim W, Cho JC, Sa T, 2013. Nitrogen-fixing bacteria with multiple plant growth promoting activities enhances growth of tomato and red pepper. Journal of Basic Microbiology 53(12), 1004–1015.
  • Kacar B, 1994. Bitki ve toprağın kimyasal analizleri: III. toprak analizleri, Ankara üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara No:3.
  • Kızılkaya R, 2008. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecological Engineering 33(2), 150-156.
  • Kim KY, Jordan D, McDonald GA, 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry 30(8-9), 995-1003.
  • Kpomblekou K, Tabatabai MA. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science 158:442-453.
  • Kumar A, Kumar A, Devi S, Patil S, Payal C, Negi S, 2012. Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Research in Science and Technology 4(2), 1-5.
  • Masciandaro G, Ceccanti B, Ronchi V, Bauer C, 2000. Kinetic parameters of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biology and Fertility of Soils 32(6), 479–483.
  • Namlı A, Mahmood A, Sevilir B, Özkır E, 2017. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eurasian Journal of Soil Science 6(3), 249.
  • Nannipieri P, Grego S, Ceccanti B, 1990. Ecological significance of the biological activity in soil. In: Soil Biochemistry. Bollag J (Ed.). Volume 6, Taylor and Francis.
  • Nannipieri P, Giagnoni L, Landi L, Renella G, 2011. Role of phosphatase enzymes in soil. In: Phosphorus in action. Bünemann E, Oberson A, Frossard E (Eds.). Springer. p. 215–43.
  • Ndung’u-Magiroi KW, Herrmann L, Okalebo JR, Othieno CO, Pypers P, Lesueur D, 2012. Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Annals of Microbiology 62(3), 897-904.
  • Obbard JP, (2001). Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Applied Geochemistry 16(11-12), 1405-1411.
  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R, 2009. Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant and Soil 320(1-2), 169-179.
  • Pascual JA, Garcia G, Hernandez T, Moreno JL, Ros M, 2000. Soil microbial activity as a biomarker of degradation and remediationprocesses. Soil Biology and Biochemistry 32: 1877–1883.
  • Peper IL, Gerba CP, Brendecke JW, 1995. Enviromental Microbiology: A Laboratory Manual. Academic Press, New York, 175p.
  • Ponmurugan P, Gopi C, 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology 5(4), 348-350.
  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP, 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology 73, 87-96.
  • Rashid M, Khalil S, Ayub N, Alam S, Latif F, 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences 7(2), 187-196.
  • Raza FA, Faisal M, 2013. Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Australian Journal of Crop Science 7(11), 1693-1698.
  • Rossel D, Tarradellas J, 1991. Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environmental Toxicology and Water Quality 6(1), 17–33.
  • Schloter M, Dilly O, Munch JC, 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment 98(1-3), 255-262.
  • Skujins J, 1976 Extracellular enzymes in soil. CRC Critical Reviews in Microbiology 4: 383–421.
  • Singh M, Awasthi A, Soni SK, Singh R, Verma RK, Kalra A, 2015. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Scientific Reports 5, 15500.
  • Smith JL, Paul EA, 1990. The significance of soil microbial biomass estimations. In: Soil Biochemistry. Bollag JM, Stotzky G (Eds.). Volume 6, Marcel Dekker Inc. pp. 357-396.
  • Stephen J, Shabanamol S, Rishad KS, Jisha MS, 2015. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp.(MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech, 5(5), 831-837.
  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS, 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PloS one, 13(9), e0204408.
  • Tabatabai MA, 1994. Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, Madison, WI, pp 775–833.
  • Tabatabai MA, Bremner JM, 1969. Use of p-nitrophenyl phosphate forassay of soil phosphatase activity, Soil Biology and Biochemistry 1, 301-307.
  • Trevors JT, 1984. Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biology and Biochemistry 16(6), 673-674.
  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C, 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4, 356.
  • Vendan RT, Yu YJ, Lee SH, Rhee YH, 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology 48(5), 559-565.
  • Wan JH, Wong MH, 2004. Effects of earthworm activity and P‐solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science 167(2), 209-213.
  • Yurtsever N, 1984. Deneysel istatistik metotları. Tarım Orman ve Köyişleri Bakanlığı Köy Hizmetleri Genel Müdürlüğü.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Betül Bayraklı Bu kişi benim 0000-0002-4829-180X

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Bayraklı, B. (2020). Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi. Toprak Bilimi Ve Bitki Besleme Dergisi, 8(2), 157-166. https://doi.org/10.33409/tbbbd.848527
AMA Bayraklı B. Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi. tbbbd. Aralık 2020;8(2):157-166. doi:10.33409/tbbbd.848527
Chicago Bayraklı, Betül. “Kaya Fosfat Ve TSP gübresi Ile Uygulanan Micrococcus Luteus AR-72’nin toprağın Bazı Biyolojik özellikleri, NO3 Ve alınabilir P içeriğine Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi 8, sy. 2 (Aralık 2020): 157-66. https://doi.org/10.33409/tbbbd.848527.
EndNote Bayraklı B (01 Aralık 2020) Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 8 2 157–166.
IEEE B. Bayraklı, “Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi”, tbbbd, c. 8, sy. 2, ss. 157–166, 2020, doi: 10.33409/tbbbd.848527.
ISNAD Bayraklı, Betül. “Kaya Fosfat Ve TSP gübresi Ile Uygulanan Micrococcus Luteus AR-72’nin toprağın Bazı Biyolojik özellikleri, NO3 Ve alınabilir P içeriğine Etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 8/2 (Aralık 2020), 157-166. https://doi.org/10.33409/tbbbd.848527.
JAMA Bayraklı B. Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi. tbbbd. 2020;8:157–166.
MLA Bayraklı, Betül. “Kaya Fosfat Ve TSP gübresi Ile Uygulanan Micrococcus Luteus AR-72’nin toprağın Bazı Biyolojik özellikleri, NO3 Ve alınabilir P içeriğine Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 8, sy. 2, 2020, ss. 157-66, doi:10.33409/tbbbd.848527.
Vancouver Bayraklı B. Kaya fosfat ve TSP gübresi ile uygulanan Micrococcus luteus AR-72’nin toprağın bazı biyolojik özellikleri, NO3 ve alınabilir P içeriğine etkisi. tbbbd. 2020;8(2):157-66.