Araştırma Makalesi
BibTex RIS Kaynak Göster

Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu

Yıl 2018, Cilt: 11 Sayı: 1, 52 - 64, 05.06.2018

Öz

Metin tabanlı içerikler arasında bulunan
duyguların tespit edilmesi duygu analizi olarak ifade edilir. İnternet
altyapısının dünya genelinde güçlenmesi, insanlara bir konudaki düşüncelerini
çevrimiçi ifade etme imkânı sağlamıştır. İnternet ortamında toplanan bu
verilerden önemli bilgilerin çıkarılması hemen hemen her alan için önem arz
etmektedir. Bu çalışmada da çokça kullanılan Twitter veri kümeleri üzerinde
duygu analizi işlemi gerçekleştirilmiştir. Metinlerdeki duygular olumlu,
olumsuz veya belirsiz olarak sınıflandırılmıştır. Sınıflandırma işleminden önce
veri kümeleri üzerinde metin madenciliği önişlemleri uygulanmış ve sonrasında
özellik çıkarımı yapılmıştır. Sınıflandırma işlemi için optimizasyon tabanlı
yeni bir yöntem önerilmiştir. Bu yöntemle elde edilen sınıflandırma performansı
literatürdeki çalışmalardan daha başarılı olduğu deneylerle tespit edilmiştir.

Kaynakça

  • [1] Y.-H. Hu, Y.-L. Chen, and H.-L. Chou, “Opinion mining from online hotel reviews--A text summarization approach,” Inf. Process. Manag., vol. 53, no. 2, pp. 436–449, 2017.
  • [2] D. Stojanovski, “Twitter Sentiment Analysis using Deep CNN,” vol. 9121, no. JUNE, 2015.
  • [3] Z. Jianqiang and G. Xiaolin, “Comparison research on text pre-processing methods on twitter sentiment analysis,” IEEE Access, vol. 5, pp. 2870–2879, 2017.
  • [4] M. Bouazizi and T. Otsuki, “A Pattern-Based Approach for Sarcasm Detection on Twitter,” IEEE Access, vol. 4, pp. 5477–5488, 2016.
  • [5] F. Wu, Z. Yuan, and Y. Huang, “Collaboratively Training Sentiment Classifiers for Multiple Domains,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 7, pp. 1370–1383, 2017.
  • [6] A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, “Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization,” Procedia Eng., vol. 53, pp. 453–462, 2013.
  • [7] A. Tripathy, A. Agrawal, and S. Kumar, “Classification of Sentimental Reviews Using Machine Learning Techniques,” vol. 0, no. November, pp. 117–126, 2014.
  • [8] D. Jiang, X. Luo, J. Xuan, and Z. Xu, “Sentiment Computing for the News Event Based on the Big Social Media Data,” IEEE Access, vol. 3536, no. c, pp. 1–1, 2016.
  • [9] I. Habernal, T. Ptáček, and J. Steinberger, “Reprint of ‘supervised sentiment analysis in Czech social media,’” Inf. Process. Manag., vol. 51, no. 4, pp. 532–546, 2015.
  • [10] Y. H. Hu, K. Chen, and P. J. Lee, “The effect of user-controllable filters on the prediction of online hotel reviews,” Inf. Manag., vol. 54, no. 6, pp. 728–744, 2017.
  • [11] A. Chandra Pandey, D. Singh Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,” Inf. Process. Manag., vol. 53, no. 4, pp. 764–779, 2017.
  • [12] I. Aydın, F. Başkaya, and M. U. Salur, “Sentiment classification with PSO based weighted K-NN,” 2017 IEEE International Conference Computer Science and Engineering (UBMK), pp. 739-744, 2017.
  • [13] J. Azeez and D. J. Aravindhar, “Hybrid approach to crime prediction using deep learning,” 2015 Int. Conf. Adv. Comput. Commun. Informatics, pp. 1701–1710, 2015.
  • [14] M. U. Salur, “A Data Mining Application with Mahout : Sentiment Analysis on Tweets of Newspapers.”, International Conference Computer Science and Engineering (UBMK), 2016.
  • [15] V. Bobichev, O. Kanishcheva, and O. Cherednichenko, “Sentiment Analysis in the Ukrainian and Russian News,” pp. 1050–1055, 2017.
  • [16] R. Bhonde, B. Bhagwat, S. Ingulkar, and A. Pande, “Sentiment Analysis Based on Dictionary Approach,” Int. J. Emerg. Eng. Res. Technol., vol. 3, no. 1, pp. 51–55, 2015.
  • [17] F. K. Chopra, “Sentiment Analyzing by Dictionary based Approach,” vol. 152, no. 5, pp. 32–34, 2016.
  • [18] “SentiWordNet.” [Çevrimiçi]. URL: http://sentiwordnet.isti.cnr.it/. [Erişim: 29-Kasım-2017].
  • [19] “SenticTweety.” [Çevrimiçi]. URL: http://tweety.sentic.net/. [Erişim: 29-Kasım-2017].
  • [20] “MPQA Opinion Corpus.” [Çevrimiçi]. URL: http://mpqa.cs.pitt.edu/#subj_lexicon. [Erişim: 29-Kasım-2017].
  • [21] O. Appel, F. Chiclana, J. Carter, and H. Fujita, “A hybrid approach to sentiment analysis,” 2016 IEEE Congr. Evol. Comput., no. Cci, pp. 4950–4957, 2016.
  • [22] “Twitter-sanders-apple.” [Çevrimiçi]. URL: http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/. [Erişim: 24-Ekim-2017].
  • [23] “Twitter Sentiment Corpus.” [Çevrimiçi]. URL: http://www.sananalytics.com/lab/twitter-sentiment/. [Erişim: 11- Ekim -2017].
  • [24] “Twitter Dataset.” [Çevrimiçi]. URL: https://drive.google.com/file/d/0BwPSGZHAP_yoN2pZcVl1Qmp1OEU/view. [Erişim: 12- Ekim -2017].
  • [25] B. Altınel and M. C. Ganiz, “A new hybrid semi-supervised algorithm for text classification with class-based semantics,” Knowledge-Based Syst., vol. 108, pp. 50–64, 2016.
  • [26] A. Cervantes, I.M. Galvan, P.Isasi, “AMPSO: A new Particle swarm method for nearest neighborhood classification,” IEEE T [1]rans. On Systems, Man, and Cybernetics-Part B, vol. 39, pp. 1082-1091, March 2009.
Yıl 2018, Cilt: 11 Sayı: 1, 52 - 64, 05.06.2018

Öz

Kaynakça

  • [1] Y.-H. Hu, Y.-L. Chen, and H.-L. Chou, “Opinion mining from online hotel reviews--A text summarization approach,” Inf. Process. Manag., vol. 53, no. 2, pp. 436–449, 2017.
  • [2] D. Stojanovski, “Twitter Sentiment Analysis using Deep CNN,” vol. 9121, no. JUNE, 2015.
  • [3] Z. Jianqiang and G. Xiaolin, “Comparison research on text pre-processing methods on twitter sentiment analysis,” IEEE Access, vol. 5, pp. 2870–2879, 2017.
  • [4] M. Bouazizi and T. Otsuki, “A Pattern-Based Approach for Sarcasm Detection on Twitter,” IEEE Access, vol. 4, pp. 5477–5488, 2016.
  • [5] F. Wu, Z. Yuan, and Y. Huang, “Collaboratively Training Sentiment Classifiers for Multiple Domains,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 7, pp. 1370–1383, 2017.
  • [6] A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, “Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization,” Procedia Eng., vol. 53, pp. 453–462, 2013.
  • [7] A. Tripathy, A. Agrawal, and S. Kumar, “Classification of Sentimental Reviews Using Machine Learning Techniques,” vol. 0, no. November, pp. 117–126, 2014.
  • [8] D. Jiang, X. Luo, J. Xuan, and Z. Xu, “Sentiment Computing for the News Event Based on the Big Social Media Data,” IEEE Access, vol. 3536, no. c, pp. 1–1, 2016.
  • [9] I. Habernal, T. Ptáček, and J. Steinberger, “Reprint of ‘supervised sentiment analysis in Czech social media,’” Inf. Process. Manag., vol. 51, no. 4, pp. 532–546, 2015.
  • [10] Y. H. Hu, K. Chen, and P. J. Lee, “The effect of user-controllable filters on the prediction of online hotel reviews,” Inf. Manag., vol. 54, no. 6, pp. 728–744, 2017.
  • [11] A. Chandra Pandey, D. Singh Rajpoot, and M. Saraswat, “Twitter sentiment analysis using hybrid cuckoo search method,” Inf. Process. Manag., vol. 53, no. 4, pp. 764–779, 2017.
  • [12] I. Aydın, F. Başkaya, and M. U. Salur, “Sentiment classification with PSO based weighted K-NN,” 2017 IEEE International Conference Computer Science and Engineering (UBMK), pp. 739-744, 2017.
  • [13] J. Azeez and D. J. Aravindhar, “Hybrid approach to crime prediction using deep learning,” 2015 Int. Conf. Adv. Comput. Commun. Informatics, pp. 1701–1710, 2015.
  • [14] M. U. Salur, “A Data Mining Application with Mahout : Sentiment Analysis on Tweets of Newspapers.”, International Conference Computer Science and Engineering (UBMK), 2016.
  • [15] V. Bobichev, O. Kanishcheva, and O. Cherednichenko, “Sentiment Analysis in the Ukrainian and Russian News,” pp. 1050–1055, 2017.
  • [16] R. Bhonde, B. Bhagwat, S. Ingulkar, and A. Pande, “Sentiment Analysis Based on Dictionary Approach,” Int. J. Emerg. Eng. Res. Technol., vol. 3, no. 1, pp. 51–55, 2015.
  • [17] F. K. Chopra, “Sentiment Analyzing by Dictionary based Approach,” vol. 152, no. 5, pp. 32–34, 2016.
  • [18] “SentiWordNet.” [Çevrimiçi]. URL: http://sentiwordnet.isti.cnr.it/. [Erişim: 29-Kasım-2017].
  • [19] “SenticTweety.” [Çevrimiçi]. URL: http://tweety.sentic.net/. [Erişim: 29-Kasım-2017].
  • [20] “MPQA Opinion Corpus.” [Çevrimiçi]. URL: http://mpqa.cs.pitt.edu/#subj_lexicon. [Erişim: 29-Kasım-2017].
  • [21] O. Appel, F. Chiclana, J. Carter, and H. Fujita, “A hybrid approach to sentiment analysis,” 2016 IEEE Congr. Evol. Comput., no. Cci, pp. 4950–4957, 2016.
  • [22] “Twitter-sanders-apple.” [Çevrimiçi]. URL: http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/. [Erişim: 24-Ekim-2017].
  • [23] “Twitter Sentiment Corpus.” [Çevrimiçi]. URL: http://www.sananalytics.com/lab/twitter-sentiment/. [Erişim: 11- Ekim -2017].
  • [24] “Twitter Dataset.” [Çevrimiçi]. URL: https://drive.google.com/file/d/0BwPSGZHAP_yoN2pZcVl1Qmp1OEU/view. [Erişim: 12- Ekim -2017].
  • [25] B. Altınel and M. C. Ganiz, “A new hybrid semi-supervised algorithm for text classification with class-based semantics,” Knowledge-Based Syst., vol. 108, pp. 50–64, 2016.
  • [26] A. Cervantes, I.M. Galvan, P.Isasi, “AMPSO: A new Particle swarm method for nearest neighborhood classification,” IEEE T [1]rans. On Systems, Man, and Cybernetics-Part B, vol. 39, pp. 1082-1091, March 2009.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler(Araştırma)
Yazarlar

İlhan Aydın

Mehmet Umut Salur

Fatma Başkaya Bu kişi benim

Yayımlanma Tarihi 5 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 11 Sayı: 1

Kaynak Göster

APA Aydın, İ., Salur, M. U., & Başkaya, F. (2018). Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, 11(1), 52-64.
AMA Aydın İ, Salur MU, Başkaya F. Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu. TBV-BBMD. Haziran 2018;11(1):52-64.
Chicago Aydın, İlhan, Mehmet Umut Salur, ve Fatma Başkaya. “Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi 11, sy. 1 (Haziran 2018): 52-64.
EndNote Aydın İ, Salur MU, Başkaya F (01 Haziran 2018) Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 11 1 52–64.
IEEE İ. Aydın, M. U. Salur, ve F. Başkaya, “Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu”, TBV-BBMD, c. 11, sy. 1, ss. 52–64, 2018.
ISNAD Aydın, İlhan vd. “Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 11/1 (Haziran 2018), 52-64.
JAMA Aydın İ, Salur MU, Başkaya F. Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu. TBV-BBMD. 2018;11:52–64.
MLA Aydın, İlhan vd. “Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, c. 11, sy. 1, 2018, ss. 52-64.
Vancouver Aydın İ, Salur MU, Başkaya F. Duygu Analizi için Çoklu Populasyon Tabanlı Parçacık Sürü Optimizasyonu. TBV-BBMD. 2018;11(1):52-64.

https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü

 

Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız.

Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır:

1.       Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir.

2.       Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır.

3.       Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır.

4.       Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir.

5.       İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir.

6.       Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.

 88x31.png   Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.