Araştırma Makalesi
BibTex RIS Kaynak Göster

Yangın sonrası Akdeniz kızılçam (Pinus brutia Ten.) ormanlarında toprak element konsantrasyonlarındaki değişimler

Yıl 2025, Sayı: 88, 157 - 170, 29.12.2025
https://doi.org/10.17211/tcd.1817476

Öz

Orman yangınları, Akdeniz ekosistemlerinde vejetasyon yapısını, besin döngülerini, erozyon süreçlerini, su kalitesini ve toprakların fiziksel ile kimyasal özelliklerini önemli ölçüde etkileyen doğal bozulma olaylarıdır. Bu çalışma, Antalya ili Serik ilçesi Gebiz yöresinde, yarı kurak Akdeniz iklim koşullarında yer alan kızılçam (Pinus brutia Ten.) ormanlarında, yangından bir yıl sonra üst toprakta (0–5 cm) meydana gelen kimyasal değişimleri incelemeyi amaçlamaktadır. Yangın geçirmiş ve kontrol alanlarından alınan toplam 12 toprak örneğinde toplam azot (TN), fosfor (P), kalsiyum (Ca), magnezyum (Mg), potasyum (K), sodyum (Na), demir (Fe), bakır (Cu), çinko (Zn), manganez (Mn), organik karbon (OC), pH, elektriksel iletkenlik (EC) ve kalsiyum karbonat (CaCO₃) analiz edilmiştir. Veriler, dağılım özelliklerine göre eşleştirilmiş örneklem t-testi veya Wilcoxon testiyle değerlendirilmiş; ayrıca yangın kaynaklı zenginleşme faktörü (EFWF) hesaplanmıştır. Bulgular, yangın sonrası Zn (3,45), K (2,83), Ca (2,22), Mn (1,52) ve P (1,17) elementlerinde belirgin artışlar olduğunu göstermiştir. Buna karşın Fe (1,00) ve Cu (1,01) değerleri benzer kalmış, Mg (0,64) ve Na (0,85) azalmıştır. Sonuç olarak, yangından bir yıl sonra dahi toprak kimyasında anlamlı değişimlerin sürdüğü ve bu etkinin yangın sonrası toprak yönetimi ile rehabilitasyon planlamasında dikkate alınması gerektiği belirlenmiştir.

Etik Beyan

Bu çalışma için Etik Kurul Onay Belgesi gerekmemektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012425183

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından yürütülen 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında desteklenmiştir (Proje Kodu: 1919B012425183). Laboratuvar analizleri konusunda yardımcı olan Batı Akdeniz Ormancılık Araştırma Enstitüsü Müdürlüğü ve ilgili laboratuvar çalışanlarına teşekkür ederiz

Kaynakça

  • Abatzoglou, J. T., & Kolden, C. A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 22(7), 1003-1020. http://dx.doi.org/10.1071/WF13019
  • Alcañiz, M., Outeiro, L., Francos, M., Farguell, J., & Úbeda, X. (2016). Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Science of The Total Environment, 572, 1329-1335. http://dx.doi.org/10.1016/j.scitotenv.2016.01.115
  • Atalay, İ. (2006). Toprak oluşumu, sınıflandırılması ve coğrafyası. Çevre ve Orman Bakanlığı, Ağaçlandırma ve Erozyon Kontrolü Genel Müdürlüğü (AGM).
  • Atalay, İ. (2014). Türkiye’nin ekolojik bölgeleri. Meta Basım ve Matbaacılık Hizmetleri.
  • Avcı, M., & Korkmaz, M. (2021). Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler. Turkish Journal of Forestry, 22(3), 229-240. https://doi.org/10.18182/tjf.942706
  • Badía, D., Sánchez, C., Aznar, J. M., & Martí, C. (2015). Post-fire hillslope log debris dams for runoff and erosion mitigation in the semiarid Ebro Basin. Geoderma, 237, 298-307. http://dx.doi.org/10.1016/j.geoderma.2014.09.004
  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology & Geophysics, 5(1), 1-4. http://dx.doi.org/10.4172/2381-8719.1000237
  • Bento-Gonçalves, A., Vieira, A., Úbeda, X., & Martin, D. (2012). Fire and soils: Key concepts and recent advances. Geoderma, 191, 3-13. http://dx.doi.org/10.1016/j.geoderma.2012.01.004
  • Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., ... & Mataix-Solera, J. (2014). Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. http://dx.doi.org/10.1016/j.earscirev.2013.12.007
  • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., ... & Pyne, S. J. (2009). Fire in the Earth system. Science, 324(5926), 481-484. http://dx.doi.org/10.1126/science.1163886
  • Bremner, J. M. (1996). Nitrogen – Total. In D. L. Sparks (Ed.), Methods of soil analysis – Part 3 -Chemical methods (pp. 1085-1121). Soil Science Society of America, American Society of Agronomy.
  • Campos, I., Abrantes, N., Keizer, J. J., Vale, C., & Pereira, P. (2016). Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of The Total Environment, 572, 1363-1376. http://dx.doi.org/10.1016/j.scitotenv.2016.01.190
  • Caon, L., Vallejo, V. R., Ritsema, C. J., & Geissen, V. (2014). Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47-58. http://dx.doi.org/10.1016/j.earscirev.2014.09.001
  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1-10. http://dx.doi.org/10.1007/s00442-004-1788-8
  • Çakmak, S. (2025). Yangın sonrası uygulanan farklı rehabilitasyon çalışmalarının erozyon süreçleri, su kalitesi ve toprak özellikleri üzerine olan etkileri: 2021 Manavgat yangın sahası örneği. (Yayın No. 963700) [Doktora Tezi, Akdeniz Üniversitesi]. YÖK Tez Merkezi.
  • DeBano, L.F. (1990). Effects of fire on the soil resource in Arizona chaparral. In J.S. Krammes, (tech. coord.), Effects of fire management of southwestern natural resources (pp. 65-77). Gen. Tech. Rep. RM-191. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
  • DeBano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195-206. https://doi.org/10.1016/S0022-1694(00)00194-3
  • Esen, A. N., Yushin, N., Grozdov, D., Yıldız, C., Zinicovscaia, I., Haciyakupoglu, S., ... & Gorum, T. (2023). Effect of wildfire on soil element concentrations in Mediterranean Türkiye. Journal of Radioanalytical and Nuclear Chemistry, 332(11), 4667-4676. https://doi.org/10.1007/s10967-023-08894-5
  • Fernández-García, V., Miesel, J., Baeza, M. J., Marcos, E., & Calvo, L. (2019). Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire. Applied Soil Ecology, 135, 147-156. https://doi.org/10.1016/j.apsoil.2018.12.002
  • Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54-61. http://dx.doi.org/10.1016/j.foreco.2012.10.022
  • Francos, M., Stefanuto, E. B., Úbeda, X., & Pereira, P. (2019). Long-term impact of prescribed fire on soil chemical properties in a wildland-urban interface. Northeastern Iberian Peninsula. Science of The Total Environment, 689, 305-311. https://doi.org/10.1016/j.scitotenv.2019.06.434
  • Francos, M., Úbeda, X., Pereira, P., & Alcañiz, M. (2018). Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of The Total Environment, 615, 664-671. https://doi.org/10.1016/j.scitotenv.2017.09.311
  • French, N. H., Kasischke, E. S., Hall, R. J., Murphy, K. A., Verbyla, D. L., Hoy, E. E., & Allen, J. L. (2008). Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire, 17(4), 443-462. https://doi.org/10.1071/WF08007
  • García-Orenes, F., Arcenegui, V., Chrenková, K., Mataix-Solera, J., Moltó, J., Jara-Navarro, A. B., & Torres, M. P. (2017). Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Science of The Total Environment, 586, 1057-1065. http://dx.doi.org/10.1016/j.scitotenv.2017.02.090
  • Girona-García, A., Vieira, D. C., Silva, J., Fernández, C., Robichaud, P. R., & Keizer, J. J. (2021). Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis. Earth-Science Reviews, 217, 103611. https://doi.org/10.1016/j.earscirev.2021.103611
  • Hebel, C. L., Smith, J. E., & Cromack Jr, K. (2009). Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology, 42(2), 150-159. https://doi.org/10.1016/j.apsoil.2009.03.004
  • Heydari, M., Rostamy, A., Najafi, F., & Dey, D. C. (2017). Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. Journal of Forestry Research, 28(1), 95-104. https://doi.org/10.1007/s11676-016-0299-x
  • Houba, V. J. G., Van der Lee, J. J., & Novozamsky, I. (1995). Soil analysis procedures, other procedures. In Soil and plant analysis, Part 5B (pp. 260). Waganingen Agricultural University.
  • Hrelja, I., Šestak, I., & Bogunović, I. (2020). Wildfire impacts on soil physical and chemical properties-a short review of recent studies. Agriculturae Conspectus Scientificus, 85(4), 293-301. https://hrcak.srce.hr/245967 IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0 [Computer software]. IBM Corp.
  • Inbar, A., Lado, M., Sternberg, M., Tenau, H., & Ben-Hur, M. (2014). Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221, 131-138. http://dx.doi.org/10.1016/j.geoderma.2014.01.015
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prince Hall Inc.
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Key, C. H., & Benson, N. C., (2006). Landscape assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In D. C. Lutes, R. E. Keane, J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland, & L. J. Gangi Ogden (Eds.), FIREMON: Fire effects monitoring and inventory system (pp. LA-1-55). USDA Forest Service, Rocky Mountain Research Station, Gen. Tech. Rep (RMRS-GTR-164-CD).
  • Köy Hizmetleri Genel Müdürlüğü (KHGM) (1993). Antalya ili 1/100.000 ölçekli arazi varlığı haritası. Ankara.
  • Kuo, S. (1996). Phosphorus. In D.L. Sparks (Ed), Methods of soil analysis – Part 3 -Chemical methods (pp. 869-919). Soil Science Society of America and American Society of Agronomy.
  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Lloret, F., Piñol, J. & Castellnou, M., (2009). Wildfires. In J. Woodward (Ed.), The Physical Geography of the Mediterranean (pp. 541–560). Oxford University Press.
  • Loppert. R. H., and D. L. Suarez, (1996). Carbonate and gypsum. In J. M. Bartels, (Ed), Methods of soil analysis part 3. chemical methods (pp 437-476). American Society of Agronomy.
  • Lucas-Borja, M. E., Delgado-Baquerizo, M., Munoz-Rojas, M., Plaza-Alvarez, P. A., Gomez-Sanchez, M. E., Gonzalez-Romero, J., Pena-Molina, E., Moya, D., de las Heras, J., (2021). Changes in ecosystem properties after post-fire management strategies in wildfire-affected Mediterranean forests. Journal of Applied Ecology. 58(4), 836–846. https://doi.org/10.1111/1365-2664.13819
  • Mastrolonardo, G., Rumpel, C., Forte, C., Doerr, S. H., & Certini, G. (2015). Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 245–246, 40-51. https://doi.org/10.1016/j.geoderma.2015.01.006
  • Meteoroloji Genel Müdürlüğü (MGM). (2024). Serik/Gebiz orman sahası meteoroloji istasyonu verileri (2013–2023). T.C. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü.
  • Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg, P. F., ... & Syphard, A. D. (2014). Learning to coexist with wildfire. Nature, 515(7525), 58-66. https://doi.org/10.1038/nature13946
  • Neary, D. G., Ryan, K. C., & DeBano, L. F. (2005). Wildland fire in ecosystems: Effects of fire on soils and water (Gen. Tech. Rep. RMRS-GTR-42, Vol. 4, p. 250). US Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-42-V4
  • OGM. (2021). 2021 yılı orman yangınları raporu. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü. https://www.ogm.gov.tr
  • OGM. (2024). Serik Orman İşletme Müdürlüğü Gebiz Yangını. T.C. Orman Genel Müdürlüğü. https://www.ogm.gov.tr/antalyaobm/haberler/157
  • Pardini, G., Gispert, M., & Dunjó, G. (2004). Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of The Total Environment, 328(1-3), 237-246. https://doi.org/10.1016/j.scitotenv.2004.01.026
  • Parra, J. G., Rivero, V. C., & Lopez, T. I. (1996). Forms of Mn in soils affected by a forest fire. Science of The Total Environment, 181(3), 231-236. https://doi.org/10.1016/0048-9697(95)05022-1
  • Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change, 63(3), 337-350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c
  • Pausas, J. G., & Keeley, J. E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and The Environment, 17(5), 289-295. https://doi.org/10.1002/FEE.2044
  • Pellegrini, A. F., Ahlström, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, A. C., ... & Jackson, R. B. (2018). Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553(7687), 194-198. https://doi.org/10.1038/nature24668
  • Pereira, M. G., Trigo, R. M., Da Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25. https://doi.org/10.1016/j.agrformet.2004.12.007
  • Pereira, P., Francos, M., Brevik, E. C., Ubeda, X., & Bogunovic, I. (2018). Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26-32. https://doi.org/10.1016/j.coesh.2018.04.002
  • Pereira, P., Úbeda, X., & Martin, D. A. (2012). Fire severity effects on ash chemical composition and water-extractable elements. Geoderma, 191, 105-114. https://doi.org/10.1016/j.geoderma.2012.02.005
  • Raison, R. J., Khanna, P. K., & Woods, P. V. (1985). Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15(1), 132-140. https://doi.org/10.1139/x85-022
  • Rhoades, J.D., (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed), Methods of soil analysis. Part 3. Chemical methods (pp. 417-436). Soil Science Society of America.
  • San-Miguel, J., Camia, A., (2009). Forest fires at a glance: facts, figures and trends in the EU. In Y. Birot, (Ed), Living with wildfires: what can science tell us discussion (pp 11-19). European Forest Institute. San-Miguel-
  • Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertà, G., Artes Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., Nuijten, D., Leray, T., & de la Torre, M. (2023). Forest fires in Europe, Middle East and North Africa 2022. Publications Office of the European Union. https://doi.org/10.2760/8027062
  • Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M., Preston, C. M., & Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22(1), 76-91. https://doi.org/10.1111/gcb.12985
  • Shakesby, R. A. (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105(3-4), 71-100. https://doi.org/10.1016/j.earscirev.2011.01.001
  • Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74(3-4), 269-307. https://doi.org/10.1016/j.earscirev.2005.10.006
  • Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). United States Department of Agriculture, Natural Resources Conservation Service.
  • Suarez, D. L. (1996) Beryllium, magnesium, calcium, strontium and barium. In D.L. Sparks (Ed), Methods of soil analysis- Part 3 - Chemical methods (pp 575-601). Soil Science Society of America and American Society of Agronomy.
  • Switzer, J. M., Hope, G. D., Grayston, S. J., Prescott, C. E. (2012). Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. Forest Ecology and Management, 275, 1–13. https://doi.org/10.1016/j.foreco.2012.02.025
  • Şenel, M. (2010). 1/100 000 ölçekli açınsama nitelikli Türkiye jeoloji haritası serisi, Isparta (N26) Paftası (2. Baskı) [Harita]. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi Başkanlığı.
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Tavşanoğlu, Ç., & Gürkan, B. (2010). Physical and chemical properties of the soils at burned and unburned Pinus brutia Ten. forest sites in the Marmaris region, Turkey. Hacettepe Journal of Biology and Chemistry, 38(1), 71-76.
  • Tessler, N., Sapir, Y., Wittenberg, L., & Greenbaum, N. (2016). Recovery of Mediterranean vegetation after recurrent forest fires: insight from the 2010 forest fire on Mount Carmel, Israel. Land Degradation & Development, 27(5), 1424-1431. https://doi.org/10.1002/ldr.2419
  • Thomas, G.W., (1996). Soil pH and soil acidity. In J. M. Bartels, (Ed), Methods of Soil Analysis Part 3. Chemical Methods (pp 475-490). American Society of Agronomy.
  • Úbeda, X., Pereira, P., Outeiro, L., & Martin, D. A. (2009). Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development, 20(6), 589-608. https://doi.org/10.1002/ldr.930
  • Wagenbrenner, J. W., MacDonald, L. H., & Rough, D. (2006). Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrological Processes: An International Journal, 20(14), 2989-3006. https://doi.org/10.1002/hyp.6146
  • Yılmaz, H., Çakmak, S. & Demir, T. (2022). Akdeniz Havzası orman yangınları ve doğal kaynaklar üzerindeki etkileri. İçinde E. Kaynak Iltar (Ed), Bütün yönleriyle Akdeniz 2 (ss. 137-169). Arkeoloji ve Sanat Yayınları.
  • Zhang, Y., & Biswas, A. (2017). The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: A review. In A. Rakshit, P. C. Abhilash, H. B. Singh, & S. Ghosh (Eds.), Adaptive soil management: From theory to practices (pp. 465-476). Springer. https://doi.org/10.1007/978-981-10-3638-5_21

Post-fire changes in soil element concentrations of Mediterranean Turkish red pine (Pinus brutia Ten.) forests

Yıl 2025, Sayı: 88, 157 - 170, 29.12.2025
https://doi.org/10.17211/tcd.1817476

Öz

Forest fires are major disturbance events that significantly affect vegetation structure, nutrient cycling, erosion processes, water quality, and the physical and chemical properties of soils in Mediterranean ecosystems. This study aims to examine the changes in surface soil (0–5 cm) chemical properties one year after a wildfire in Pinus brutia Ten. forests located in the Gebiz region of Serik district, Antalya, under semi-arid Mediterranean climatic conditions. A total of 12 soil samples collected from burned and unburned (control) areas were analyzed for total nitrogen (TN), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), organic carbon (OC), pH, electrical conductivity (EC), and calcium carbonate (CaCO₃). Data were statistically evaluated using the paired-sample t-test or Wilcoxon test depending on distribution characteristics, and the fire-related enrichment factor (EFWF) was calculated. The results indicated significant increases in Zn (3.45), K (2.83), Ca (2.22), Mn (1.52), and P (1.17) after the fire, while Fe (1.00) and Cu (1.01) remained similar and Mg (0.64) and Na (0.85) decreased. Overall, the findings demonstrate that substantial alterations in soil chemistry persist even one year after the fire, highlighting the need to consider these effects in post-fire soil management and rehabilitation planning.

Etik Beyan

Ethics Committee Approval is not required for this study.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012425183

Teşekkür

This study was supported by the 2209-A Research Projects Support Programme for Undergraduate Students conducted by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) (Project Code: 1919B012425183). The authors express their gratitude to the Southwest Anatolia Forestry Research Institute and its laboratory staff for their valuable assistance during the laboratory analyses.

Kaynakça

  • Abatzoglou, J. T., & Kolden, C. A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 22(7), 1003-1020. http://dx.doi.org/10.1071/WF13019
  • Alcañiz, M., Outeiro, L., Francos, M., Farguell, J., & Úbeda, X. (2016). Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Science of The Total Environment, 572, 1329-1335. http://dx.doi.org/10.1016/j.scitotenv.2016.01.115
  • Atalay, İ. (2006). Toprak oluşumu, sınıflandırılması ve coğrafyası. Çevre ve Orman Bakanlığı, Ağaçlandırma ve Erozyon Kontrolü Genel Müdürlüğü (AGM).
  • Atalay, İ. (2014). Türkiye’nin ekolojik bölgeleri. Meta Basım ve Matbaacılık Hizmetleri.
  • Avcı, M., & Korkmaz, M. (2021). Türkiye’de orman yangını sorunu: Güncel bazı konular üzerine değerlendirmeler. Turkish Journal of Forestry, 22(3), 229-240. https://doi.org/10.18182/tjf.942706
  • Badía, D., Sánchez, C., Aznar, J. M., & Martí, C. (2015). Post-fire hillslope log debris dams for runoff and erosion mitigation in the semiarid Ebro Basin. Geoderma, 237, 298-307. http://dx.doi.org/10.1016/j.geoderma.2014.09.004
  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology & Geophysics, 5(1), 1-4. http://dx.doi.org/10.4172/2381-8719.1000237
  • Bento-Gonçalves, A., Vieira, A., Úbeda, X., & Martin, D. (2012). Fire and soils: Key concepts and recent advances. Geoderma, 191, 3-13. http://dx.doi.org/10.1016/j.geoderma.2012.01.004
  • Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., ... & Mataix-Solera, J. (2014). Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. http://dx.doi.org/10.1016/j.earscirev.2013.12.007
  • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., ... & Pyne, S. J. (2009). Fire in the Earth system. Science, 324(5926), 481-484. http://dx.doi.org/10.1126/science.1163886
  • Bremner, J. M. (1996). Nitrogen – Total. In D. L. Sparks (Ed.), Methods of soil analysis – Part 3 -Chemical methods (pp. 1085-1121). Soil Science Society of America, American Society of Agronomy.
  • Campos, I., Abrantes, N., Keizer, J. J., Vale, C., & Pereira, P. (2016). Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of The Total Environment, 572, 1363-1376. http://dx.doi.org/10.1016/j.scitotenv.2016.01.190
  • Caon, L., Vallejo, V. R., Ritsema, C. J., & Geissen, V. (2014). Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47-58. http://dx.doi.org/10.1016/j.earscirev.2014.09.001
  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1-10. http://dx.doi.org/10.1007/s00442-004-1788-8
  • Çakmak, S. (2025). Yangın sonrası uygulanan farklı rehabilitasyon çalışmalarının erozyon süreçleri, su kalitesi ve toprak özellikleri üzerine olan etkileri: 2021 Manavgat yangın sahası örneği. (Yayın No. 963700) [Doktora Tezi, Akdeniz Üniversitesi]. YÖK Tez Merkezi.
  • DeBano, L.F. (1990). Effects of fire on the soil resource in Arizona chaparral. In J.S. Krammes, (tech. coord.), Effects of fire management of southwestern natural resources (pp. 65-77). Gen. Tech. Rep. RM-191. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
  • DeBano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195-206. https://doi.org/10.1016/S0022-1694(00)00194-3
  • Esen, A. N., Yushin, N., Grozdov, D., Yıldız, C., Zinicovscaia, I., Haciyakupoglu, S., ... & Gorum, T. (2023). Effect of wildfire on soil element concentrations in Mediterranean Türkiye. Journal of Radioanalytical and Nuclear Chemistry, 332(11), 4667-4676. https://doi.org/10.1007/s10967-023-08894-5
  • Fernández-García, V., Miesel, J., Baeza, M. J., Marcos, E., & Calvo, L. (2019). Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire. Applied Soil Ecology, 135, 147-156. https://doi.org/10.1016/j.apsoil.2018.12.002
  • Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54-61. http://dx.doi.org/10.1016/j.foreco.2012.10.022
  • Francos, M., Stefanuto, E. B., Úbeda, X., & Pereira, P. (2019). Long-term impact of prescribed fire on soil chemical properties in a wildland-urban interface. Northeastern Iberian Peninsula. Science of The Total Environment, 689, 305-311. https://doi.org/10.1016/j.scitotenv.2019.06.434
  • Francos, M., Úbeda, X., Pereira, P., & Alcañiz, M. (2018). Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of The Total Environment, 615, 664-671. https://doi.org/10.1016/j.scitotenv.2017.09.311
  • French, N. H., Kasischke, E. S., Hall, R. J., Murphy, K. A., Verbyla, D. L., Hoy, E. E., & Allen, J. L. (2008). Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire, 17(4), 443-462. https://doi.org/10.1071/WF08007
  • García-Orenes, F., Arcenegui, V., Chrenková, K., Mataix-Solera, J., Moltó, J., Jara-Navarro, A. B., & Torres, M. P. (2017). Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Science of The Total Environment, 586, 1057-1065. http://dx.doi.org/10.1016/j.scitotenv.2017.02.090
  • Girona-García, A., Vieira, D. C., Silva, J., Fernández, C., Robichaud, P. R., & Keizer, J. J. (2021). Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis. Earth-Science Reviews, 217, 103611. https://doi.org/10.1016/j.earscirev.2021.103611
  • Hebel, C. L., Smith, J. E., & Cromack Jr, K. (2009). Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology, 42(2), 150-159. https://doi.org/10.1016/j.apsoil.2009.03.004
  • Heydari, M., Rostamy, A., Najafi, F., & Dey, D. C. (2017). Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. Journal of Forestry Research, 28(1), 95-104. https://doi.org/10.1007/s11676-016-0299-x
  • Houba, V. J. G., Van der Lee, J. J., & Novozamsky, I. (1995). Soil analysis procedures, other procedures. In Soil and plant analysis, Part 5B (pp. 260). Waganingen Agricultural University.
  • Hrelja, I., Šestak, I., & Bogunović, I. (2020). Wildfire impacts on soil physical and chemical properties-a short review of recent studies. Agriculturae Conspectus Scientificus, 85(4), 293-301. https://hrcak.srce.hr/245967 IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0 [Computer software]. IBM Corp.
  • Inbar, A., Lado, M., Sternberg, M., Tenau, H., & Ben-Hur, M. (2014). Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221, 131-138. http://dx.doi.org/10.1016/j.geoderma.2014.01.015
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prince Hall Inc.
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Key, C. H., & Benson, N. C., (2006). Landscape assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In D. C. Lutes, R. E. Keane, J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland, & L. J. Gangi Ogden (Eds.), FIREMON: Fire effects monitoring and inventory system (pp. LA-1-55). USDA Forest Service, Rocky Mountain Research Station, Gen. Tech. Rep (RMRS-GTR-164-CD).
  • Köy Hizmetleri Genel Müdürlüğü (KHGM) (1993). Antalya ili 1/100.000 ölçekli arazi varlığı haritası. Ankara.
  • Kuo, S. (1996). Phosphorus. In D.L. Sparks (Ed), Methods of soil analysis – Part 3 -Chemical methods (pp. 869-919). Soil Science Society of America and American Society of Agronomy.
  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Lloret, F., Piñol, J. & Castellnou, M., (2009). Wildfires. In J. Woodward (Ed.), The Physical Geography of the Mediterranean (pp. 541–560). Oxford University Press.
  • Loppert. R. H., and D. L. Suarez, (1996). Carbonate and gypsum. In J. M. Bartels, (Ed), Methods of soil analysis part 3. chemical methods (pp 437-476). American Society of Agronomy.
  • Lucas-Borja, M. E., Delgado-Baquerizo, M., Munoz-Rojas, M., Plaza-Alvarez, P. A., Gomez-Sanchez, M. E., Gonzalez-Romero, J., Pena-Molina, E., Moya, D., de las Heras, J., (2021). Changes in ecosystem properties after post-fire management strategies in wildfire-affected Mediterranean forests. Journal of Applied Ecology. 58(4), 836–846. https://doi.org/10.1111/1365-2664.13819
  • Mastrolonardo, G., Rumpel, C., Forte, C., Doerr, S. H., & Certini, G. (2015). Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 245–246, 40-51. https://doi.org/10.1016/j.geoderma.2015.01.006
  • Meteoroloji Genel Müdürlüğü (MGM). (2024). Serik/Gebiz orman sahası meteoroloji istasyonu verileri (2013–2023). T.C. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü.
  • Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg, P. F., ... & Syphard, A. D. (2014). Learning to coexist with wildfire. Nature, 515(7525), 58-66. https://doi.org/10.1038/nature13946
  • Neary, D. G., Ryan, K. C., & DeBano, L. F. (2005). Wildland fire in ecosystems: Effects of fire on soils and water (Gen. Tech. Rep. RMRS-GTR-42, Vol. 4, p. 250). US Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-42-V4
  • OGM. (2021). 2021 yılı orman yangınları raporu. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü. https://www.ogm.gov.tr
  • OGM. (2024). Serik Orman İşletme Müdürlüğü Gebiz Yangını. T.C. Orman Genel Müdürlüğü. https://www.ogm.gov.tr/antalyaobm/haberler/157
  • Pardini, G., Gispert, M., & Dunjó, G. (2004). Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of The Total Environment, 328(1-3), 237-246. https://doi.org/10.1016/j.scitotenv.2004.01.026
  • Parra, J. G., Rivero, V. C., & Lopez, T. I. (1996). Forms of Mn in soils affected by a forest fire. Science of The Total Environment, 181(3), 231-236. https://doi.org/10.1016/0048-9697(95)05022-1
  • Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change, 63(3), 337-350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c
  • Pausas, J. G., & Keeley, J. E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and The Environment, 17(5), 289-295. https://doi.org/10.1002/FEE.2044
  • Pellegrini, A. F., Ahlström, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, A. C., ... & Jackson, R. B. (2018). Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553(7687), 194-198. https://doi.org/10.1038/nature24668
  • Pereira, M. G., Trigo, R. M., Da Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25. https://doi.org/10.1016/j.agrformet.2004.12.007
  • Pereira, P., Francos, M., Brevik, E. C., Ubeda, X., & Bogunovic, I. (2018). Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26-32. https://doi.org/10.1016/j.coesh.2018.04.002
  • Pereira, P., Úbeda, X., & Martin, D. A. (2012). Fire severity effects on ash chemical composition and water-extractable elements. Geoderma, 191, 105-114. https://doi.org/10.1016/j.geoderma.2012.02.005
  • Raison, R. J., Khanna, P. K., & Woods, P. V. (1985). Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15(1), 132-140. https://doi.org/10.1139/x85-022
  • Rhoades, J.D., (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed), Methods of soil analysis. Part 3. Chemical methods (pp. 417-436). Soil Science Society of America.
  • San-Miguel, J., Camia, A., (2009). Forest fires at a glance: facts, figures and trends in the EU. In Y. Birot, (Ed), Living with wildfires: what can science tell us discussion (pp 11-19). European Forest Institute. San-Miguel-
  • Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertà, G., Artes Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., Nuijten, D., Leray, T., & de la Torre, M. (2023). Forest fires in Europe, Middle East and North Africa 2022. Publications Office of the European Union. https://doi.org/10.2760/8027062
  • Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M., Preston, C. M., & Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22(1), 76-91. https://doi.org/10.1111/gcb.12985
  • Shakesby, R. A. (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105(3-4), 71-100. https://doi.org/10.1016/j.earscirev.2011.01.001
  • Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74(3-4), 269-307. https://doi.org/10.1016/j.earscirev.2005.10.006
  • Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). United States Department of Agriculture, Natural Resources Conservation Service.
  • Suarez, D. L. (1996) Beryllium, magnesium, calcium, strontium and barium. In D.L. Sparks (Ed), Methods of soil analysis- Part 3 - Chemical methods (pp 575-601). Soil Science Society of America and American Society of Agronomy.
  • Switzer, J. M., Hope, G. D., Grayston, S. J., Prescott, C. E. (2012). Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. Forest Ecology and Management, 275, 1–13. https://doi.org/10.1016/j.foreco.2012.02.025
  • Şenel, M. (2010). 1/100 000 ölçekli açınsama nitelikli Türkiye jeoloji haritası serisi, Isparta (N26) Paftası (2. Baskı) [Harita]. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi Başkanlığı.
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Tavşanoğlu, Ç., & Gürkan, B. (2010). Physical and chemical properties of the soils at burned and unburned Pinus brutia Ten. forest sites in the Marmaris region, Turkey. Hacettepe Journal of Biology and Chemistry, 38(1), 71-76.
  • Tessler, N., Sapir, Y., Wittenberg, L., & Greenbaum, N. (2016). Recovery of Mediterranean vegetation after recurrent forest fires: insight from the 2010 forest fire on Mount Carmel, Israel. Land Degradation & Development, 27(5), 1424-1431. https://doi.org/10.1002/ldr.2419
  • Thomas, G.W., (1996). Soil pH and soil acidity. In J. M. Bartels, (Ed), Methods of Soil Analysis Part 3. Chemical Methods (pp 475-490). American Society of Agronomy.
  • Úbeda, X., Pereira, P., Outeiro, L., & Martin, D. A. (2009). Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development, 20(6), 589-608. https://doi.org/10.1002/ldr.930
  • Wagenbrenner, J. W., MacDonald, L. H., & Rough, D. (2006). Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrological Processes: An International Journal, 20(14), 2989-3006. https://doi.org/10.1002/hyp.6146
  • Yılmaz, H., Çakmak, S. & Demir, T. (2022). Akdeniz Havzası orman yangınları ve doğal kaynaklar üzerindeki etkileri. İçinde E. Kaynak Iltar (Ed), Bütün yönleriyle Akdeniz 2 (ss. 137-169). Arkeoloji ve Sanat Yayınları.
  • Zhang, Y., & Biswas, A. (2017). The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: A review. In A. Rakshit, P. C. Abhilash, H. B. Singh, & S. Ghosh (Eds.), Adaptive soil management: From theory to practices (pp. 465-476). Springer. https://doi.org/10.1007/978-981-10-3638-5_21
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doğal Afetler, Toprak Coğrafyası, Fiziki Coğrafya
Bölüm Araştırma Makalesi
Yazarlar

Seçkin Çakmak 0000-0001-8546-6608

Hatice Çeber 0009-0007-1641-6261

Hüseyin Yılmaz 0000-0001-8208-8453

Tuncer Demir 0000-0001-6808-4974

Proje Numarası 1919B012425183
Gönderilme Tarihi 4 Kasım 2025
Kabul Tarihi 25 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 88

Kaynak Göster

APA Çakmak, S., Çeber, H., Yılmaz, H., Demir, T. (2025). Yangın sonrası Akdeniz kızılçam (Pinus brutia Ten.) ormanlarında toprak element konsantrasyonlarındaki değişimler. Türk Coğrafya Dergisi(88), 157-170. https://doi.org/10.17211/tcd.1817476

Yayıncı: Türk Coğrafya Kurumu