Araştırma Makalesi
BibTex RIS Kaynak Göster

BİR BOYUTLU PERİYODİK SINIR ŞARTLI HÜCRESEL DÖNÜŞÜMLERİN KARAKTERİZASYONU

Yıl 2023, Cilt: 22 Sayı: 44, 352 - 358, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1323022

Öz

Bu çalışmada periyodik sınır şartı altında, bir boyutlu hücresel dönüşümleri inceliyoruz. Zp cismi üzerindeki hesaplamalar için matris cebirlerini kullanıyoruz. Hücresel dönüşümlerin tersini bulmak için bir formül elde ediyoruz. Son olarak, hücresel dönüşümlerin bazı önemli örneklerini veriyoruz.

Kaynakça

  • Akın, H. (2021). Description of reversibility of 9-Cyclic 1D finite linear cellular automata with periodic boundary conditions, Journal of Cellular Automata, 16, 127–151.
  • Chang, C.C. & Yang Y. C. (2020). Characterization of reversible intermediate boundary cellular automata. Journal of Statistical Mechanics: Theory and Experiment, 1, 1-13.
  • Cinkir, Z., Akın, H. & Siap, İ. (2011). Reversibility of 1D cellular automata with periodic boundary over finite fields Z_{p}. Journal of Statistical Physics, 143(4), 807-823.
  • del Rey, A.M. & Rodriguez, S.G. (2011). Reversibility of linear cellular automata. Applied Mathematics and Computation, 217(21), 8360-8366.
  • Das, A.K. & Chaudhuri, P.P. (1993). Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation. IEEE Trans. on Computers, 42 (3), 340–35.
  • Khan, A.R., Choudhury, P.P., Dihidar, K. & Verma, R. (1999). Text compression using two dimensional cellular automata. Computers and Mathematics with Applications, 37, 115–127.
  • Neumann, J. V. (1966). The theory of self-reproducing automata. Univ. of Illinois Press, Urbana.
  • Wolfram, S., (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3), 601-644.

CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA

Yıl 2023, Cilt: 22 Sayı: 44, 352 - 358, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1323022

Öz

In this paper, we investigate one dimensional cellular automata under periodic boundary conditions. We use matrix algebra for calculating over on Zp. We obtain a formula for finding the reversibility of cellular automata. Finally, we give some important examples of cellular automata.

Kaynakça

  • Akın, H. (2021). Description of reversibility of 9-Cyclic 1D finite linear cellular automata with periodic boundary conditions, Journal of Cellular Automata, 16, 127–151.
  • Chang, C.C. & Yang Y. C. (2020). Characterization of reversible intermediate boundary cellular automata. Journal of Statistical Mechanics: Theory and Experiment, 1, 1-13.
  • Cinkir, Z., Akın, H. & Siap, İ. (2011). Reversibility of 1D cellular automata with periodic boundary over finite fields Z_{p}. Journal of Statistical Physics, 143(4), 807-823.
  • del Rey, A.M. & Rodriguez, S.G. (2011). Reversibility of linear cellular automata. Applied Mathematics and Computation, 217(21), 8360-8366.
  • Das, A.K. & Chaudhuri, P.P. (1993). Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation. IEEE Trans. on Computers, 42 (3), 340–35.
  • Khan, A.R., Choudhury, P.P., Dihidar, K. & Verma, R. (1999). Text compression using two dimensional cellular automata. Computers and Mathematics with Applications, 37, 115–127.
  • Neumann, J. V. (1966). The theory of self-reproducing automata. Univ. of Illinois Press, Urbana.
  • Wolfram, S., (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3), 601-644.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç)
Bölüm Araştırma Makaleleri
Yazarlar

Ferhat Şah 0000-0003-4847-9180

Erken Görünüm Tarihi 12 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 5 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 22 Sayı: 44

Kaynak Göster

APA Şah, F. (2023). CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 22(44), 352-358. https://doi.org/10.55071/ticaretfbd.1323022
AMA Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2023;22(44):352-358. doi:10.55071/ticaretfbd.1323022
Chicago Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22, sy. 44 (Aralık 2023): 352-58. https://doi.org/10.55071/ticaretfbd.1323022.
EndNote Şah F (01 Aralık 2023) CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22 44 352–358.
IEEE F. Şah, “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 44, ss. 352–358, 2023, doi: 10.55071/ticaretfbd.1323022.
ISNAD Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22/44 (Aralık 2023), 352-358. https://doi.org/10.55071/ticaretfbd.1323022.
JAMA Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22:352–358.
MLA Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 44, 2023, ss. 352-8, doi:10.55071/ticaretfbd.1323022.
Vancouver Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22(44):352-8.