PDF EndNote BibTex RIS Kaynak Göster

İlköğretim Sekizinci Sınıf Öğrencilerinin Bilgi Oluşturma Süreçlerinin Matematiksel Güçlerine Göre İncelenmesi

Yıl 2008, Cilt 21, Sayı 2, 485 - 510, 01.08.2008

Öz

Kaynakça

  • Bikner-Ahsbahs, A. (2004). Towards the Emergence of Constructing Mathematical Meanings, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2:119-126.
  • Cassier, E. (1923). Substance and function Einsteins theory of relavity. NY: Dover.
  • Cassier, E. (1957). The philosophy of symbolic forms (Vol.3). The phenomenology of knowledge. London: Yale university Pres.
  • Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: an exploratory study, International Journal of Mathematics Education in Science and Technology, 34(5), 719-737.
  • Cohen, L., Manion, L., Morrison, K. (2002). Research Methods in Education, London: Routledge.
  • Davydov, V.V.: 1990, Soviet Studies in Mathematics Education: Vol. 2. Types of Generalization in Instruction: Logical and Psychological Problems in the Structuring of School Curricula, J. Kilpatrick (ed.) and J. Teller (Trans.), National Council of Teachers of Mathematics, Reston, VA.
  • Dienes, Z.P. (1961). On abstraction and generalization. Harward Educational Review.31(3), 281-301.
  • Dubinsky, E., McDonald, M. (2001). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. In D. Hilton et.(Eds.) The teaching and learning of mathematics at University level: An ICMI Study, Kluwer Academic Publishers, 273-280.
  • Guba, E.G. ve Lincoln, Y.S. (1989). Fourth Generation Evaluation. Newbury Park, CA:Sage.
  • Hershkowitz, Hadas, Dreyfus, 2006). Diversity in the construction of a group’s shared knowledge. In Novotna, J., Moraova, M. Ve Stehlikova, N. (Eds). Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Sayı:2, 297-304, Prague.
  • Hershkowitz, R., Schwarz, B., Dreyfus, T., (2001). Abstraction in Context: Epistemic Actions. Journal for Research in Mathematics Education, 32(2): 195-222.
  • Leont’ev, A.N. (1981). The problem of activity in psychology, in J.V. Wertsch (ed. And Trans.), The Concept of Activity in Soviet Psychology, M.E. Sharpe, Armonk, NY, 37-71.
  • Mitchelmore, M. (2002). The role of abstraction and generalization in the development of mathematical knowledge, East Asia Regional Conference on Mathematics Education, Singapore.
  • Monaghan, J. ve Ozmantar, M. F. (2006). Abstraction and consolidation. Educa- tional Studies in Mathematics, 62(3), 233-258.
  • NAEP (2003). Mathematics Framework for the 2003 National Assessment of Educational Progress
  • Noss, R. ve Hoyles, C. (1996). Windows on Mathematical Meanings, Kluwer, Dordrecht: The Netherlands
  • Ohlsson, S. and Lehtinen, E. (1997). Abstraction and the acquisition of complex ideas, International Journal of Educational Research 27, 37–48.
  • Özmantar, M. (2005). An Investigation of the Formation of Mathematical Abstractions through Scaffolding, Doktora Tezi, University of Leeds.
  • Russell, B. (1926). Education and Good Life. NY: Boni and Liveright.
  • Sid, R. (1998). Learning to see the wind, Mathematics Teaching in The Middle School, 3(7).
  • Sierpinska, A. (1994). Understanding in mathematics, London: Falmer.
  • Schwarz, B., Dreyfus, T., Hadas, N., Hershkowitz, R. (2004). Teacher Guidance of Knowledge Construction, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4: 169-176.
  • Tall, D. (1991). Advanced Mathematical Thinking, The Netherlands: Kluwer.
  • Van Oers, B. (2001). Contextualisation for abstraction. Cognitive Science Quarterly, 1(3), 279-305.
  • Yeşildere, S. (2006). Farklı matematiksel güce sahip ilköğretim 6, 7 ve 8. sınıf öğrencilerinin matematiksel düşünme ve bilgiyi oluşturma süreçlerinin incelenmesi, Yayınlanmamış Doktora Tezi, DEÜ Eğitim Bilimleri Enstitüsü.
  • Yıldırım, A. ve Şimşek, H. (2000). Sosyal Bilimlerde Nitel Araştırma Yöntemleri, Ankara:Seçkin Yayıncılık.
  • Yin, R. (1994). Case Study Research: Design and Methods, USA:Sage.
  • The Investigation of Knowledge Construction Processes of Primary 8th
  • Grade Students According to Their Mathematical Power

İlköğretim Sekizinci Sınıf Öğrencilerinin Bilgi Oluşturma Süreçlerinin Matematiksel Güçlerine Göre İncelenmesi

Yıl 2008, Cilt 21, Sayı 2, 485 - 510, 01.08.2008

Öz

Bu araştırmanın amacı, farklı matematiksel güce sahip ilköğretim sekizinci sınıf öğrencilerinin bilgi oluşturma süreçlerini incelemektir. Matematiksel gücü yüksek ve düşük olan öğrencilerin bilgi oluşturma süreçleri karşılaştırılmakta ve öğrencileri matematiksel olarak güçlü yapan yönler tartışılmaktadır. Bununla birlikte bilgi oluşturma sürecini etkileyen matematiksel güç fikrinde yer alan en önemli becerilerin neler olduğunu ortaya koymak hedeflenmektedir. Araştırma yöntemi olarak örnek olay çalışması seçilmiştir. Örnek olay çalışmasında veri toplama aracı olarak açık uçlu problemler kullanılmıştır. Elde edilen verilerden farklı matematiksel güce sahip öğrencilerin matematiksel düşünme ve bilgi oluşturma süreçlerinde izledikleri yollar arasında bir takım farklılıkların olduğu tespit edilmiştir. Ulaşılan veriden hareketle matematiksel güç bileşenlerinin bilgi yapısının oluşumundaki rolü ve matematiksel güç oluşumunda bilgi yapıla- rının organizasyonu hakkında modeller oluşturulmuştur

Kaynakça

  • Bikner-Ahsbahs, A. (2004). Towards the Emergence of Constructing Mathematical Meanings, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2:119-126.
  • Cassier, E. (1923). Substance and function Einsteins theory of relavity. NY: Dover.
  • Cassier, E. (1957). The philosophy of symbolic forms (Vol.3). The phenomenology of knowledge. London: Yale university Pres.
  • Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: an exploratory study, International Journal of Mathematics Education in Science and Technology, 34(5), 719-737.
  • Cohen, L., Manion, L., Morrison, K. (2002). Research Methods in Education, London: Routledge.
  • Davydov, V.V.: 1990, Soviet Studies in Mathematics Education: Vol. 2. Types of Generalization in Instruction: Logical and Psychological Problems in the Structuring of School Curricula, J. Kilpatrick (ed.) and J. Teller (Trans.), National Council of Teachers of Mathematics, Reston, VA.
  • Dienes, Z.P. (1961). On abstraction and generalization. Harward Educational Review.31(3), 281-301.
  • Dubinsky, E., McDonald, M. (2001). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. In D. Hilton et.(Eds.) The teaching and learning of mathematics at University level: An ICMI Study, Kluwer Academic Publishers, 273-280.
  • Guba, E.G. ve Lincoln, Y.S. (1989). Fourth Generation Evaluation. Newbury Park, CA:Sage.
  • Hershkowitz, Hadas, Dreyfus, 2006). Diversity in the construction of a group’s shared knowledge. In Novotna, J., Moraova, M. Ve Stehlikova, N. (Eds). Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Sayı:2, 297-304, Prague.
  • Hershkowitz, R., Schwarz, B., Dreyfus, T., (2001). Abstraction in Context: Epistemic Actions. Journal for Research in Mathematics Education, 32(2): 195-222.
  • Leont’ev, A.N. (1981). The problem of activity in psychology, in J.V. Wertsch (ed. And Trans.), The Concept of Activity in Soviet Psychology, M.E. Sharpe, Armonk, NY, 37-71.
  • Mitchelmore, M. (2002). The role of abstraction and generalization in the development of mathematical knowledge, East Asia Regional Conference on Mathematics Education, Singapore.
  • Monaghan, J. ve Ozmantar, M. F. (2006). Abstraction and consolidation. Educa- tional Studies in Mathematics, 62(3), 233-258.
  • NAEP (2003). Mathematics Framework for the 2003 National Assessment of Educational Progress
  • Noss, R. ve Hoyles, C. (1996). Windows on Mathematical Meanings, Kluwer, Dordrecht: The Netherlands
  • Ohlsson, S. and Lehtinen, E. (1997). Abstraction and the acquisition of complex ideas, International Journal of Educational Research 27, 37–48.
  • Özmantar, M. (2005). An Investigation of the Formation of Mathematical Abstractions through Scaffolding, Doktora Tezi, University of Leeds.
  • Russell, B. (1926). Education and Good Life. NY: Boni and Liveright.
  • Sid, R. (1998). Learning to see the wind, Mathematics Teaching in The Middle School, 3(7).
  • Sierpinska, A. (1994). Understanding in mathematics, London: Falmer.
  • Schwarz, B., Dreyfus, T., Hadas, N., Hershkowitz, R. (2004). Teacher Guidance of Knowledge Construction, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4: 169-176.
  • Tall, D. (1991). Advanced Mathematical Thinking, The Netherlands: Kluwer.
  • Van Oers, B. (2001). Contextualisation for abstraction. Cognitive Science Quarterly, 1(3), 279-305.
  • Yeşildere, S. (2006). Farklı matematiksel güce sahip ilköğretim 6, 7 ve 8. sınıf öğrencilerinin matematiksel düşünme ve bilgiyi oluşturma süreçlerinin incelenmesi, Yayınlanmamış Doktora Tezi, DEÜ Eğitim Bilimleri Enstitüsü.
  • Yıldırım, A. ve Şimşek, H. (2000). Sosyal Bilimlerde Nitel Araştırma Yöntemleri, Ankara:Seçkin Yayıncılık.
  • Yin, R. (1994). Case Study Research: Design and Methods, USA:Sage.
  • The Investigation of Knowledge Construction Processes of Primary 8th
  • Grade Students According to Their Mathematical Power

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sibel YEŞİLDERE Bu kişi benim


Elif B. TÜRNÜKLÜ Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2008
Başvuru Tarihi 14 Kasım 2015
Kabul Tarihi
Yayınlandığı Sayı Yıl 2008, Cilt 21, Sayı 2

Kaynak Göster

APA Yeşildere, S. & Türnüklü, E. B. (2008). İlköğretim Sekizinci Sınıf Öğrencilerinin Bilgi Oluşturma Süreçlerinin Matematiksel Güçlerine Göre İncelenmesi . Uludağ Üniversitesi Eğitim Fakültesi Dergisi , 21 (2) , 485-510 . Retrieved from https://dergipark.org.tr/tr/pub/uefad/issue/16688/173428