Günümüzde çoğu eğitim kurumunda hazırlanan ders programı her dönem için yeniden yapılmaktadır. Bu işlemin her dönem tekrardan yapılması ve çoğu kurumda elle hazırlanıyor olması bu olayı zahmetli ve zaman alıcı bir iş haline getirmektedir. Bu çalışma için bir fakültenin gerçek verileri kullanılmış ve fakültenin bölümleri için uygun bir haftalık ders programı çizelgesi oluşturulmaya çalışılmıştır. Çalışmada problemin çözümü noktasında evrimsel hesaplama teknikleri olarak kabul edilen Genetik Algoritma, Parçacık Sürü Optimizasyonu ve Yapay Arı Kolonisi yöntemleri kullanılmış ve üç yöntem için de aynı veriler kullanılarak, mevcut yöntemlerin problemin çözümü üzerindeki performansları analiz edilmiştir. Çalışmada öğretim elemanı, öğrenci ve fakülte personelini memnun edecek şekilde bütün kısıtlar dikkate alınmıştır. Geliştirilen sistemde kullanılan yöntemlerin parametreleri üzerinde değişiklikler yapılarak algoritmalar optimize edilmiştir. Yapılan deneyler sonucunda elde edilen ders programları kontrol edilerek fakülte için uygun ders programları elde edildiği görülmüştür. Ayrıca kullanılan algoritmalar, çalışma zamanı ve çözüme yakınsama açısından değerlendirilerek performansları karşılaştırılmıştır.
Genetik Algoritma Parçacık Sürü Optimizasyonu Yapay Arı Kolonisi Ders Çizelgeleme Problemi
Nowadays, the curriculum prepared in most educational institutions is carried out for each term. The fact that this process is repeated every semester and that it is prepared manually in most institutions makes this event a laborious and time consuming task. The actual data of a faculty were used for this study and an appropriate weekly course schedule was prepared for the departments of the faculty. In the study, the methods of Genetic Algorithm, Particle Swarm Optimization and Artificial Bee Colony, which are accepted as evolutionary calculation techniques at the point of solution of the problem, were used and the performance of the existing methods on the solution of the problem was analyzed by using the same data for all three methods. In the study, all constraints were taken into consideration in a way that would satisfy the teaching staff, students and faculty staff. The algorithms are optimized by making changes on the parameters of the methods used in the developed system. It was observed that the curriculum obtained as a result of the experiments were controlled and appropriate curriculum for the faculty was obtained. In addition, the algorithms used were evaluated in terms of runtime and convergence, and their performance was compared.
Genetic Algorithm Particle Swarm Optimization Artificial Bee Colony
Birincil Dil | Türkçe |
---|---|
Konular | Çalışma Ekonomisi |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 14 Nisan 2022 |
Gönderilme Tarihi | 23 Mart 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 8 Sayı: 1 |
Uluslararası Ekonomi ve Yenilik Dergisi
Karadeniz Teknik Üniversitesi, İİBF, İktisat Bölümü, 61080, Trabzon/Türkiye
This work is licensed under a Creative Commons Attribution 4.0 International License.