Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalabak Tepe Kireçtaşlarının Nihai Taşıma Gücünün Farklı Analiz Yöntemleri ile Araştırılması

Yıl 2024, , 236 - 259, 30.04.2024
https://doi.org/10.53433/yyufbed.1308564

Öz

Farklı kütle özelliklerine sahip kayaç kütlelerinin taşıma gücünü en doğru şekilde tahmin eden yöntemlerin seçiminde karşılaştırmalı çalışmalar önem kazanmaktadır. Hangi yöntemin daha sağlam sonuçlar verdiği dayandıkları parametrelerle ilişkili olmaktadır. Bu çalışmada, Miyosen yaşlı Kalabak Tepe (İzmir) kireçtaşlarının taşıma gücü incelemesi değişik yöntemler uygulanarak gerçekleştirilmiştir. Kayaç kütle özellikleri Genelleştirilmiş Hoek-Brown yenilme ölçütü dikkate alınarak belirlenmiştir. Taşıma gücü için uygun yöntemlerin belirlenmesinde arazi modeli ve süreksizliklerin konumları dikkate alınmıştır. Kayacın kütle dayanım parametreleriyle birlikte limit analiz veya sonlu elemanlar yöntemlerinin taşıma gücü analizlerinde kullanılması uygun bir yaklaşım olmaktadır. Sonlu elemanlar yöntemiyle kireçtaşlarının nihai taşıma gücü, limit analiz yöntemlerinden elde edilenlerle karşılaştırılmıştır. Sonuç olarak, bazı limit analiz yöntemlerinden elde edilen sonuçlar, sonlu elemanlar ve diğer limit analiz yöntemlerinden elde edilenlerden daha yüksek bulunmuştur. Yöntemler arasındaki bulgu farklılıkları detaylıca tartışılarak yöntemlerin pratik kullanımına ışık tutulmuştur.

Kaynakça

  • Agar, J. G., Morgenstern, N. R., & Scott, J. (1987). Shear strength and stress-strain behaviour of Athabasca oil sand at elevated temperatures and pressures. Canadian Geotechnical Journal, 24(1), 1-10. doi:10.1139/t87-001
  • Alemdag, S., Gurocak, Z., Solanki, P., & Zaman, M. (2008). Estimation of bearing capacity of basalts at the Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79-85. doi:10.1007/s10064-007-0112-3
  • Anon. (1979). Classification of soils and rocks for engineering geological mapping Part I : Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 364-371.
  • ASTM. (2010). ASTM D2845-05. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock. ASTM International, West Conshohocken, PA.
  • Baker, R. (2003). Inter-relations between experimental and computational aspects of slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 27, 379-401. doi:10.1002/nag.277
  • Baker, R. (2004). Nonlinear Mohr envelopes based on triaxial data. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 498-506. doi:10.1061/(ASCE)1090-0241(2004)130:5(498)
  • Barton, N. R., & Bandis, S. C. (1982). Effects of block size on the shear behaviour of jointed rock. 23rd U.S. Symp. on Rock Mechanics, Berkeley, USA.
  • Bell, A. L. (1975). The lateral pressure and resistance of clay, and the supporting power of clay foundations. Minutes of the Proceedings of the Institution of Civil Engineers, 199(1915), 233-272. doi:10.1680/imotp.1915.16217
  • Bell, F. G. (1992). Engineering in rock masses. Oxford: Butterworth-Heinemann.
  • Bieniawski, Z. T. (1989). Engineering rock mass classifications. New York, USA: Wiley.
  • Bowles, J. E. (1985). Physical and geotechnical properties of soils. McGraw Hill.
  • Chaudhary, M. T. A. (2007). FEM modelling of a large piled raft for settlement control in weak rock. Engineering Structures, 29(11), 2901-2907. doi:10.1016/j.engstruct.2007.02.001
  • Chen, H. K., Tang, H. M., & Ye, S. Q. (2006). Damage model of control fissure in perilous rock. Applied Mathematics and Mechanics, 27(7), 967-974. doi:10.1007/s10483-006-0713-y
  • De Beer, E. (1970). Experimental determination on the shape factors and the bearing capacity factors of sand. Geotechnics, 20(4) 387-411.
  • Goodman, R. E. (1989). Introduction to rock mechanics. 2nd ed. New York, USA: Wiley.
  • Gökçeoğlu, C. (1997). Killi, yoğun süreksizlik içeren ve zayıf kaya kütlelerinin mühendislik sınıflamalarında karşılaşılan güçlüklerin giderilmesine yönelik yaklaşımlar. (Doktora tezi), Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(9), 1013-36. doi:10.1061/AJGEB6.000102
  • Hoek, E. (1983). Strength of jointed rock masses. Geotechnique, 33(3), 187-223. doi:10.1680/geot.1983.33.3.187
  • Hoek, E., & Brown, E.T. (1988). The Hoek-Brown failure criterion - a 1988 update. Proceedings of the Fifteenth Canadian Rock Mechanics Symposium, University of Toronto, 31-38.
  • Hoek, E., & Brown, E. T. (1997). Practical estimates or rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165-1186.
  • Hoek, E., Carina-Torres, C., & Corkum, B. (2002). Hoek–Brown failure criterion-2002 edition. Proceedings of the 5th North American Rock Mechanics Symposium, Toronto.
  • ISRM. (2007). The Complete ISRM (International Society for Rock Mechanics) Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Editors: R. Ulusay & J.A. Hudson. Ankara, Turkey.
  • Jiang, J. C., Baker, R., & Yamagami, T. (2003). The effect of strength envelope nonlinearity on slope stability computions. Canadian Geotechnical Journal, 40, 308-325. doi:10.1139/t02-111
  • Kadakci Koca, T., & Koca, M. Y. (2022). Finite element and empirical solutions for estimating bearing capacity and settlement of a jointed, multi-layered dam rock foundation. Journal of Earth System Science, 131, 231. doi:10.1007/s12040-022-01978-y
  • Kıncal, C. (2004). İzmir iç körfezi çevresinde yer alan birimlerin coğrafi bilgi sistemleri ve uzaktan algılama teknikleri kullanılarak mühendislik jeolojisi açısından değerlendirilmesi. (Doktora Tezi), Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Koca, M. Y. (1995). Slope stability assessment of the abandoned andesite quarries in and around the izmir city center. (PhD Thesis), Dokuz Eylül University, Graduate School of Natural and Applied Science, İzmir, Türkiye.
  • Kulhawy, F. H. (1978). Geomechanical model for rock foundation settlements. ASCE Journal of Geotechnical Engineering Division, 104, 211-227.
  • Kulhawy, F., & Goodman, R. E. (1980). Design of foundations on discontinuous rock. International Conference on Structural Foundations on Rock, Sydney, Australia.
  • Kulhawy, F., & Carter, J. P. (1992). Settlement and Bearing Capacity of Foundations on Rock Masses. In F. G. Bell (Ed.), Engineering in Rock Masses. Oxford: Butterworth-Heinemann. doi:10.1016/B978-0-7506-1965-3.50016-9
  • Li, Y., & Xia, C. (2000). Time-dependent tests on intact rocks in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 37(3), 467-475. doi:10.1016/S1365-1609(99)00073-8
  • Merifield, R. S., Lyamin, A. V., & Sloan, S. W. (2006). Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek – Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 43, 920-937. doi:10.1016/j.ijrmms.2006.02.001
  • Poyraz, F. (1996). Işıklar ve Kalabak Tepe kireçtaşlarında pürüzlülük ölçümleri. Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Jeoloji Müh. Bölümü, Bitirme Projesi, İzmir.
  • Rocscience. (2014a). RocData Version 5.001; Dokuz Eylül University Academic License.
  • Rocscience. (2014b.) Dips Version 6.014; Dokuz Eylül University Academic License.
  • Rocscience. (2015). Phase 2 v.8.024; Dokuz Eylül University Academic License.
  • Saada, Z., Maghous, S., & Garnier, D. (2008). Bearing capacity of shallow foundation on rocks obeying a modified Hoek – Brown failure criterion. Computers and Geotechnics, 35, 144-154. doi:10.1016/j.compgeo.2007.06.003
  • Santarelli, F. (1987). Theoretical and experimental investigation of the stability of the axisymmetric borehole. (PhD thesis), University of London, Imperial College of Science and Technology.
  • Serrano A., Olalla, C., & Gonzalez, J. (2000). Ultimate bearing capacity of rock masses based on the modified Hoek – Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 37, 1013-1018. doi:10.1016/S1365-1609(00)00028-9
  • Serrano, A., Olalla, C., & González, J. (2001). Corrigendum to ‘‘Ultimate bearing capacity of rock masses based on the modified Hoek–Brown criterion”. International Journal of Rock Mechanics and Mining Sciences, 38, 1217. doi:10.1016/S1365-1609(02)00002-3
  • Singh, B., & Gahrooee, D. R. (1989). Application of rock mass weakening coefficient for stability assessment of slopes in heavily jointed rock masses. International Journal of Surface Mining, Reclamation and Environment, 3(4), 217-219. doi:10.1080/09208118908944277
  • Sowers, G. F. (1979). Introductory Soil Mechanics and Foundations: Geotechnical Engineering, 4th ed. New York, USA: MacMillan.
  • Terzaghi, K. (1943). Theoretical Soil Mechanics. New York, USA: Wiley.
  • TS 699. (1987). Tabii Yapı Taşları Muayene Deney Metodları. Ankara: TSE.
  • Ulusay, R., & Sönmez, H. (2007). Kaya Kütlelerin Mühendislik Özellikleri, 2. Baskı. Ankara: Türkiye Jeoloji Mühendisleri Odası Yayınları, Yayın No: 60.
  • Warpinski, N. R. (1991). Hydraulic fracturing in tight, fissured media. Journal of Petroleum Technology, 43(02), 146-209. doi:10.2118/20154-PA
  • Wu, X., Wang, G., Li, G., Han, W., Sun, S., Zhang, S., & Bi, W. (2020). Research on shear behavior and crack evolution of symmetrical discontinuous rock joints based on FEM-CZM. Symmetry, 12(8), 1314. doi:10.3390/sym12081314
  • Wyllie, D. C. (1992). Foundations on Rock. E&FN Spon.
  • Wyllie, D. C. (2003). Foundations on Rock: Engineering Practice. CRC Press.
  • Yang X. L., & Yin, J. H. (2005). Upper bound solution for ultimate bearing capacity with a modified Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 42(4), 550-560. doi:10.1016/j.ijrmms.2005.03.002
  • Yang, S. Q., & Jing, H. W. (2011). Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. International Journal of Fracture, 168, 227-250. doi:10.1007/s10704-010-9576-4
  • Yang, X. L., & Huang, F. (2011). Collapse mechanism of shallow tunnel based on nonlinear Hoek–Brown failure criterion. Tunnelling and Underground Space Technology, 26(6), 686-691. doi:10.1016/j.tust.2011.05.008
  • Yang, S. Q., Liu, X. R., & Jing, H. W. (2013). Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 63, 82-92. doi:10.1016/j.ijrmms.2013.06.008
  • Zhou X. P., Yang, H. Q., Zhang, Y. X., & Yu, M. Y. (2009). The effect of the intermediate principal stress on the ultimate bearing capacity of a foundation on rock masses. Computers and Geotechnics, 36(5), 861-870. doi:10.1016/j.compgeo.2009.01.009

Investigation of the Bearing Capacity of Kalabak Tepe Limestones by the Various Analysis Methods

Yıl 2024, , 236 - 259, 30.04.2024
https://doi.org/10.53433/yyufbed.1308564

Öz

Comparative studies play a crucial role in choosing the most accurate method to estimate the bearing capacity of rock masses with different mass characteristics. The robustness of these methods is closely related to the parameters involved in the method. In this study, bearing capacity analysis of the Miocene aged Kalabak Tepe (Izmir) limestone was performed by using different methods. The Generalized Hoek-Brown failure criterion was used to determine the properties of the rock mass. When selecting the best approach to estimate bearing capacity, we also considered the field model and orientation of the discontinuities. Limit equilibrium or finite element methods incorporating the rock mass strength parameters in bearing capacity analyses becomes a promising approach. We compared the results obtained from finite elements and limit analysis methods. Consequently, some limit analysis methods yielded greater bearing capacity than the other limit analysis and finite element methods. The differences in the findings among the methods were thoroughly discussed to shed light on the practical usage of the methods.

Kaynakça

  • Agar, J. G., Morgenstern, N. R., & Scott, J. (1987). Shear strength and stress-strain behaviour of Athabasca oil sand at elevated temperatures and pressures. Canadian Geotechnical Journal, 24(1), 1-10. doi:10.1139/t87-001
  • Alemdag, S., Gurocak, Z., Solanki, P., & Zaman, M. (2008). Estimation of bearing capacity of basalts at the Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79-85. doi:10.1007/s10064-007-0112-3
  • Anon. (1979). Classification of soils and rocks for engineering geological mapping Part I : Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 364-371.
  • ASTM. (2010). ASTM D2845-05. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock. ASTM International, West Conshohocken, PA.
  • Baker, R. (2003). Inter-relations between experimental and computational aspects of slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 27, 379-401. doi:10.1002/nag.277
  • Baker, R. (2004). Nonlinear Mohr envelopes based on triaxial data. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 498-506. doi:10.1061/(ASCE)1090-0241(2004)130:5(498)
  • Barton, N. R., & Bandis, S. C. (1982). Effects of block size on the shear behaviour of jointed rock. 23rd U.S. Symp. on Rock Mechanics, Berkeley, USA.
  • Bell, A. L. (1975). The lateral pressure and resistance of clay, and the supporting power of clay foundations. Minutes of the Proceedings of the Institution of Civil Engineers, 199(1915), 233-272. doi:10.1680/imotp.1915.16217
  • Bell, F. G. (1992). Engineering in rock masses. Oxford: Butterworth-Heinemann.
  • Bieniawski, Z. T. (1989). Engineering rock mass classifications. New York, USA: Wiley.
  • Bowles, J. E. (1985). Physical and geotechnical properties of soils. McGraw Hill.
  • Chaudhary, M. T. A. (2007). FEM modelling of a large piled raft for settlement control in weak rock. Engineering Structures, 29(11), 2901-2907. doi:10.1016/j.engstruct.2007.02.001
  • Chen, H. K., Tang, H. M., & Ye, S. Q. (2006). Damage model of control fissure in perilous rock. Applied Mathematics and Mechanics, 27(7), 967-974. doi:10.1007/s10483-006-0713-y
  • De Beer, E. (1970). Experimental determination on the shape factors and the bearing capacity factors of sand. Geotechnics, 20(4) 387-411.
  • Goodman, R. E. (1989). Introduction to rock mechanics. 2nd ed. New York, USA: Wiley.
  • Gökçeoğlu, C. (1997). Killi, yoğun süreksizlik içeren ve zayıf kaya kütlelerinin mühendislik sınıflamalarında karşılaşılan güçlüklerin giderilmesine yönelik yaklaşımlar. (Doktora tezi), Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(9), 1013-36. doi:10.1061/AJGEB6.000102
  • Hoek, E. (1983). Strength of jointed rock masses. Geotechnique, 33(3), 187-223. doi:10.1680/geot.1983.33.3.187
  • Hoek, E., & Brown, E.T. (1988). The Hoek-Brown failure criterion - a 1988 update. Proceedings of the Fifteenth Canadian Rock Mechanics Symposium, University of Toronto, 31-38.
  • Hoek, E., & Brown, E. T. (1997). Practical estimates or rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165-1186.
  • Hoek, E., Carina-Torres, C., & Corkum, B. (2002). Hoek–Brown failure criterion-2002 edition. Proceedings of the 5th North American Rock Mechanics Symposium, Toronto.
  • ISRM. (2007). The Complete ISRM (International Society for Rock Mechanics) Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Editors: R. Ulusay & J.A. Hudson. Ankara, Turkey.
  • Jiang, J. C., Baker, R., & Yamagami, T. (2003). The effect of strength envelope nonlinearity on slope stability computions. Canadian Geotechnical Journal, 40, 308-325. doi:10.1139/t02-111
  • Kadakci Koca, T., & Koca, M. Y. (2022). Finite element and empirical solutions for estimating bearing capacity and settlement of a jointed, multi-layered dam rock foundation. Journal of Earth System Science, 131, 231. doi:10.1007/s12040-022-01978-y
  • Kıncal, C. (2004). İzmir iç körfezi çevresinde yer alan birimlerin coğrafi bilgi sistemleri ve uzaktan algılama teknikleri kullanılarak mühendislik jeolojisi açısından değerlendirilmesi. (Doktora Tezi), Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Koca, M. Y. (1995). Slope stability assessment of the abandoned andesite quarries in and around the izmir city center. (PhD Thesis), Dokuz Eylül University, Graduate School of Natural and Applied Science, İzmir, Türkiye.
  • Kulhawy, F. H. (1978). Geomechanical model for rock foundation settlements. ASCE Journal of Geotechnical Engineering Division, 104, 211-227.
  • Kulhawy, F., & Goodman, R. E. (1980). Design of foundations on discontinuous rock. International Conference on Structural Foundations on Rock, Sydney, Australia.
  • Kulhawy, F., & Carter, J. P. (1992). Settlement and Bearing Capacity of Foundations on Rock Masses. In F. G. Bell (Ed.), Engineering in Rock Masses. Oxford: Butterworth-Heinemann. doi:10.1016/B978-0-7506-1965-3.50016-9
  • Li, Y., & Xia, C. (2000). Time-dependent tests on intact rocks in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 37(3), 467-475. doi:10.1016/S1365-1609(99)00073-8
  • Merifield, R. S., Lyamin, A. V., & Sloan, S. W. (2006). Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek – Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 43, 920-937. doi:10.1016/j.ijrmms.2006.02.001
  • Poyraz, F. (1996). Işıklar ve Kalabak Tepe kireçtaşlarında pürüzlülük ölçümleri. Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Jeoloji Müh. Bölümü, Bitirme Projesi, İzmir.
  • Rocscience. (2014a). RocData Version 5.001; Dokuz Eylül University Academic License.
  • Rocscience. (2014b.) Dips Version 6.014; Dokuz Eylül University Academic License.
  • Rocscience. (2015). Phase 2 v.8.024; Dokuz Eylül University Academic License.
  • Saada, Z., Maghous, S., & Garnier, D. (2008). Bearing capacity of shallow foundation on rocks obeying a modified Hoek – Brown failure criterion. Computers and Geotechnics, 35, 144-154. doi:10.1016/j.compgeo.2007.06.003
  • Santarelli, F. (1987). Theoretical and experimental investigation of the stability of the axisymmetric borehole. (PhD thesis), University of London, Imperial College of Science and Technology.
  • Serrano A., Olalla, C., & Gonzalez, J. (2000). Ultimate bearing capacity of rock masses based on the modified Hoek – Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 37, 1013-1018. doi:10.1016/S1365-1609(00)00028-9
  • Serrano, A., Olalla, C., & González, J. (2001). Corrigendum to ‘‘Ultimate bearing capacity of rock masses based on the modified Hoek–Brown criterion”. International Journal of Rock Mechanics and Mining Sciences, 38, 1217. doi:10.1016/S1365-1609(02)00002-3
  • Singh, B., & Gahrooee, D. R. (1989). Application of rock mass weakening coefficient for stability assessment of slopes in heavily jointed rock masses. International Journal of Surface Mining, Reclamation and Environment, 3(4), 217-219. doi:10.1080/09208118908944277
  • Sowers, G. F. (1979). Introductory Soil Mechanics and Foundations: Geotechnical Engineering, 4th ed. New York, USA: MacMillan.
  • Terzaghi, K. (1943). Theoretical Soil Mechanics. New York, USA: Wiley.
  • TS 699. (1987). Tabii Yapı Taşları Muayene Deney Metodları. Ankara: TSE.
  • Ulusay, R., & Sönmez, H. (2007). Kaya Kütlelerin Mühendislik Özellikleri, 2. Baskı. Ankara: Türkiye Jeoloji Mühendisleri Odası Yayınları, Yayın No: 60.
  • Warpinski, N. R. (1991). Hydraulic fracturing in tight, fissured media. Journal of Petroleum Technology, 43(02), 146-209. doi:10.2118/20154-PA
  • Wu, X., Wang, G., Li, G., Han, W., Sun, S., Zhang, S., & Bi, W. (2020). Research on shear behavior and crack evolution of symmetrical discontinuous rock joints based on FEM-CZM. Symmetry, 12(8), 1314. doi:10.3390/sym12081314
  • Wyllie, D. C. (1992). Foundations on Rock. E&FN Spon.
  • Wyllie, D. C. (2003). Foundations on Rock: Engineering Practice. CRC Press.
  • Yang X. L., & Yin, J. H. (2005). Upper bound solution for ultimate bearing capacity with a modified Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 42(4), 550-560. doi:10.1016/j.ijrmms.2005.03.002
  • Yang, S. Q., & Jing, H. W. (2011). Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. International Journal of Fracture, 168, 227-250. doi:10.1007/s10704-010-9576-4
  • Yang, X. L., & Huang, F. (2011). Collapse mechanism of shallow tunnel based on nonlinear Hoek–Brown failure criterion. Tunnelling and Underground Space Technology, 26(6), 686-691. doi:10.1016/j.tust.2011.05.008
  • Yang, S. Q., Liu, X. R., & Jing, H. W. (2013). Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 63, 82-92. doi:10.1016/j.ijrmms.2013.06.008
  • Zhou X. P., Yang, H. Q., Zhang, Y. X., & Yu, M. Y. (2009). The effect of the intermediate principal stress on the ultimate bearing capacity of a foundation on rock masses. Computers and Geotechnics, 36(5), 861-870. doi:10.1016/j.compgeo.2009.01.009
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Mühendislik Jeolojisi
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Tümay Kadakci Koca 0000-0002-6705-9117

Mehmet Kuruoğlu 0000-0001-6680-5408

Ekin Köken 0000-0003-0178-329X

Cem Kıncal 0000-0002-3279-4170

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 1 Haziran 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kadakci Koca, T., Kuruoğlu, M., Köken, E., Kıncal, C. (2024). Kalabak Tepe Kireçtaşlarının Nihai Taşıma Gücünün Farklı Analiz Yöntemleri ile Araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 236-259. https://doi.org/10.53433/yyufbed.1308564