BibTex RIS Cite

Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels

Year 2016, Volume: 14 Issue: 1, 1 - 7, 01.03.2016

Abstract

This paper introduces a finite elements method FEM based non-linear deformation simulation procedure for applicable nut kind of agricultural products for oil extraction. A case study was carried out on a sample pecan fruit kernel. Experimental and theoretical methods were utilised in this study. Some engineering properties to define in the FEM based engineering simulation were determined through physical compression tests. Subsequently, deformation of a kernel specimen was simulated considering non-linear simulation approach with assumption of elastic-plastic material model. Visual print-outs from the simulation results revealed a good accordance with experiments. This work contributes to further research into the usage of non-linear numerical method based deformation simulation studies for applicable nut kind of agricultural products

References

  • Wrigley, C.W., Corke, H., Seetharaman, K., Faubion, J. 2015. Encyclopedia of Food Grains. Academic Press, USA, 1976 p.
  • Royaltypecans, 2016. Did You Know? Facts About Pecans. URL: http://www.royaltypecans.com/ access: 05.01.2016). Available (date of access: 05.01.2016).
  • Wood, B.W., 1994. Edible tree nuts: pecan and other hickories, In: C.J. Arntzen and E.M. Ritter (eds.). Encyclopedia of Agricultural Science (Vol. 2, p. 1 8). New-York: Academic Press. 667 p.
  • Kotwaliwale, N., Weckler, P.R., Brusewitz, G.H., Kranzler, G.A., Maness, N.O., 2007. Non- destructive quality determination of pecans using soft X-rays. Postharvest Biology and Technology Vol. 45: 372-380.
  • USDA, 2015. Delta Region Pecan Production Report Department of Agriculture, National Agricultural Statistics Service. 2015).United States
  • Bao, Y., Han, J., Hu, F.B., Giovannucci, E.L., Stampfer, M.J., Willett, W.C., Fuchs, C.S., 2013. Association of nut consumption with total and cause-specific mortality. The New England Journal of Medicine 369: 2001-2011.
  • Robbins, K.S., Yi Gong, Wells, M.L., Greenspan, P., Pegg, R.B., 2015. Investigation of the antioxidant capacity and phenolic constituents of U.S. Pecans. Journal of Functional Foods 15: 11-22.
  • Wikipedia, 2016. Pecan Oil. Available URL: https://en.wikipedia.org/wiki/Pecan_oil access: 07.01.2016). (date of
  • Cardenas, W.M., Stroshine, R.L., 1991. Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE 34 (3): 920-929.
  • Chen, H., De Baerdemaeker, J., 1993a. Modal analysis of the dynamic behaviour of pineapples and its relation to fruit firmness. Trans. ASAE 36: 1439-1444.
  • Chen, H., De Baerdemaeker, J., 1993b. Finite- element-based modal analysis of fruit firmness. Trans. ASAE 36(6): 1827-1833.
  • Chen, H., De Baerdemaeker, J., Bellon, V., 1996. Finite nondestructive sensing of firmness. Trans. ASABE 39(3): 1057 1065. of the melon for
  • Lu, R., Abbott, J.A., 1997. Finite element modelling of transient responses of apples to impulse excitation. Trans. ASAE, 40: 1395–1406.
  • Hernandez, L.F., Belles, P.M., 2007. A 3-D finite element analysis of the sunflower (Helianthus annuus L.) fruit. Biomechanical approach for the improvement of its hullability. Journal of Food Engineering 78: 861-869.
  • Kabas, O., Celik, H.K., Ozmerzi, A., Akinci, I., 2008. Drop test simulation of a sample tomato with finite element method. J. Sci. Food Agric. 88: 1537-1541.
  • Celik, H.K., Rennie, A.E.W., Akinci, I., 2011. Deformation behaviour simulation of an apple under drop case by finite element method. Journal of Food Engineering 104(2): 293-298.
  • Fabbri, A., Cevoli, C., Cocci, E., Rocculi, P., 2011. Determination of the CO2 mass diffusivity of egg components by finite element model inversion. Food Research International 44(1): 204-208.
  • Xu, H., Yan, S., Wang, Y., Liu, M., 2012. Study on the walnut mechanical characteristics and shucking technology based on finite element analysis. Computer Agriculture. V, 5th IFIP TC 5/SIG 5.1 Conference, CCTA 2011, Beijing, China, October 29-31, 2011, Proceedings, Part II, pp 577-586. in
  • Ihueze, C.C., Okafor, C.E., Ogbobe, P.O., 2013. Finite design for critical stresses of compressed biomaterials under transportation. Proceedings of the World Congress on Engineering 2013, Vol III, WCE 2013, July 3-5, 2013, London, U.K.
  • Petru, M., Novák, O., Herák, D., Simanjuntak, S., 2012. Finite element method model of the mechanical behaviour of Jatropha Curcas L. seed under Engineering 111(4): 412-421. loading. Biosystems
  • Tinoco, H.A., Ocampo, D.A., Peña, F.M., Sanz- Uribe, J.R., 2014. Finite element modal analysis of the fruit-peduncle of Coffea arabica L. var. colombia mechanical properties. Computers and Electronics in Agriculture 108: 17-27. its geometrical and
  • Guessasma, S., Nouri, H., 2015. Compression behaviour of bread crumb up to densification investigated using X-ray tomography and finite element computation. Food Research International 72: 140-148.
  • Fabbri, A., Chiara Cevoli, C., 2016. Rheological parameters estimation of non-Newtonian food fluids by finite elements model inversion. Journal of Food Engineering 169: 172-178.
  • ASAE, 2012. S368.4 W/Corr. 1 DEC2000 R2012. Compression test of food materials of convex shape. American Society of Agricultural Engineers (ASAE) Standards.
  • Shelef, L., Mohsenin, N. N., 1967. Evaluation of modulus of elasticity of wheat grain. Cereal Chem. 44 (4): 393 402.
  • Mohsenin, N.N., 1986. Physical properties of plant and animal materials. 2nd Ed. Gordon and Breach Science Publishers, New York, 891 p.
  • Sitkei, G., 1986. Mechanics of Agricultural Materials. Hungary: Elsevier Science Publisher.
  • Blahovec, J., 1988. Mechanical properties of some plant materials. Journal of Materials Science 23: 3588-3593.
  • Blahovec, J., 1989. Strength and elasticity of some plant materials. 4th International Conference Physical Properties of Agricultural Materials and Their Influence on Technological Processes (Sept. 4-6), Rostock, Germany, 60-66.
  • Stroshine, R., 1998. Physical properties of agricultural material and food products. West Lafayette: Dept. of Agricultural Engineering, Purdue Univ. Press. New York, USA, 296 p.
  • Ihueze, C.C., Mgbemena, C.E., 2015. Design for limit stresses of orange fruit (Citrus Sinensis) under axial and radial compression as related to transportation and storage design. Journal of the Saudi DOI:10.1016/j.jssas.2015.02.005. Agricultural Sciences [32] Pandey, P.C., 2016. Continuum Damage Mechanics: Review of Plasticity Concepts. NPTEL - Civil Engineering Lecture Notes, Module 4 (Lectures URL: http://www.nptel.ac.in/courses/105108072/4. (date of access: 01.012016). Available
  • Finney, E.E., 1963. The viscoelastic behaviour of the potatoe, Solanum tuberosum, under quasi- static loading. Ph.D. Thesis. Michigan State University, East Lansing, USA.
  • Wang, C.-H., Zhang, L., Mai, Y.-W., 1995. Deformation and fracture of Macadamia nuts (part: 1). Int. J. Fract. 69(1): 51-65.
  • Cakir, E., Alayunt, F., Ozden, K., 2002. A study on the determination of Poisson's ratio and modulus of elasticity of some onion varieties. Asian Journal of Plant Sciences 1(4): 376-378.
  • Grotte, M., Duprat, F., Piétri, E., Loonis, D., 2002. Young's modulus, Poisson's ratio, and lame's coefficients of golden delicious apple. International Journal of Food Properties 5(2): 333-349.
  • Burubai, W., Amula, E., Davies, R.M., Etekpe, G. W.W., Daworiye, S.P., 2008. Determination of Poisson’s ratio and elastic modulus of African nutmeg (Monodora myristica). Int. Agrophysics 22: 99-102.
  • Patel, N.D, Grosse, I., Sweeney, D., Strait, D.S., Lucas, P.W., Wright, B., Godfrey, L.R., 2008. An efficient method for predicting fracture of hard food source. Proceedings of IMECE2008 International Mechanical Engineering Congress and Exposition, October 31-November 6, 2008, Boston, Massachusetts, USA. ASME
  • Boac, J.M., Casada, M.E., Maghirang, E.R., Harner III, J.P., 2010. Material and interaction properties of selected grains and oilseeds for modelling discrete particles. 53(4): 1201-1216. of the ASABE
  • Khodabakhshian, R., Emadi, B., 2011. Determination of the modulus of elasticity in agricultural seeds on the basis of elasticity theory. Middle-East 7(3): 367-373. Scientific Research
  • Kiani, M.K.D., Maghsoudi, H., Minaei, S., 2011. Determination of Poisson’s ratio and Young’s modulus of red bean grains. Journal of Food Process Engineering 34: 1573-1583.
  • Khodabakhshian, R., 2012. Poisson’s ratio of pumpkin seeds and their kernels as a function of variety, size, moisture content and loading rate. Agric Eng Int, CIGR Journal 14(3): 203-209.
  • Ipate, G., Ciulică, L. G., Rus, F. 2013. Numerical modelling and simulation of cutting vegetable products. 41(3): 5-10. Engineering
  • Cardenas, W.M., Stroshine, R.L., 1991. Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE 34(3): 920-929.
  • SolidWorks Documentation, 2010. SolidWorks simulation premium: nonlinear. Training Manual Serial Systemes SolidWorks Corporation, USA. Dassault
  • Wakabayashi, N., Ona, M., Suzuki T., Igarashi, Y., 2008. Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry 36: 463-47.
  • Lee, H-H., 2012. Finite element simulation with ANSYS Workbench 14. SDC Publications, 608 p.
  • Wu, S.R., Gu, L., 2012. Introduction to the explicit finite element method for nonlinear transient dynamics. Wiley Publication, 352 p.
  • ANSYS Documentation, 2015. Release notes: Explicit dynamics analysis. Release 16.2. ANSYS Inc.

Pikan Meyvesi Çekirdeklerinin Doğrusal Olmayan Sonlu Elemanlar Yöntemi Temelli Simülasyonu

Year 2016, Volume: 14 Issue: 1, 1 - 7, 01.03.2016

Abstract

Bu araştırmada yağı çıkartılabilir kabuklu tarım ürünlerine ait çekirdek meyvenin deformasyonu üzerine odaklanılmış ve bu ürünlerin doğrusal olmayan non-lineer deformasyonu için sonlu elemanlar yöntemi FEM temelli bir simülasyon prosedürü tanıtılmıştır. Araştırmada deneysel ve teorik yöntemler kullanılarak pikan meyvesi çekirdeği için örnek bir uygulama yürütülmüştür. FEM temelli simülasyon çalışmasında tanımlanmak üzere ürüne ait bazı fiziksel ve mekanik özellikler deneysel rijit yüzeyler arası sıkıştırma/bası testi ile belirlenmiştir. Daha sonra elastik-plastik malzeme modeli kabulü ile pikan cevizi çekirdeği deformasyonu doğrusal olmayan yaklaşımla simüle edilmiştir. Simülasyon ve fiziksel testler sonucu elde edilen görsel sonuçlar birbirleri ile oldukça uyumlu bulunmuştur. Bu araştırma, yağı çıkartılabilir kabuklu tarım ürünlerine ait çekirdek meyvenin doğrusal olmayan sayısal yöntemler ile deformasyonun belirlenmesi konusunda yapılacak ileriki çalışmalara katkıda bulunacaktır

References

  • Wrigley, C.W., Corke, H., Seetharaman, K., Faubion, J. 2015. Encyclopedia of Food Grains. Academic Press, USA, 1976 p.
  • Royaltypecans, 2016. Did You Know? Facts About Pecans. URL: http://www.royaltypecans.com/ access: 05.01.2016). Available (date of access: 05.01.2016).
  • Wood, B.W., 1994. Edible tree nuts: pecan and other hickories, In: C.J. Arntzen and E.M. Ritter (eds.). Encyclopedia of Agricultural Science (Vol. 2, p. 1 8). New-York: Academic Press. 667 p.
  • Kotwaliwale, N., Weckler, P.R., Brusewitz, G.H., Kranzler, G.A., Maness, N.O., 2007. Non- destructive quality determination of pecans using soft X-rays. Postharvest Biology and Technology Vol. 45: 372-380.
  • USDA, 2015. Delta Region Pecan Production Report Department of Agriculture, National Agricultural Statistics Service. 2015).United States
  • Bao, Y., Han, J., Hu, F.B., Giovannucci, E.L., Stampfer, M.J., Willett, W.C., Fuchs, C.S., 2013. Association of nut consumption with total and cause-specific mortality. The New England Journal of Medicine 369: 2001-2011.
  • Robbins, K.S., Yi Gong, Wells, M.L., Greenspan, P., Pegg, R.B., 2015. Investigation of the antioxidant capacity and phenolic constituents of U.S. Pecans. Journal of Functional Foods 15: 11-22.
  • Wikipedia, 2016. Pecan Oil. Available URL: https://en.wikipedia.org/wiki/Pecan_oil access: 07.01.2016). (date of
  • Cardenas, W.M., Stroshine, R.L., 1991. Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE 34 (3): 920-929.
  • Chen, H., De Baerdemaeker, J., 1993a. Modal analysis of the dynamic behaviour of pineapples and its relation to fruit firmness. Trans. ASAE 36: 1439-1444.
  • Chen, H., De Baerdemaeker, J., 1993b. Finite- element-based modal analysis of fruit firmness. Trans. ASAE 36(6): 1827-1833.
  • Chen, H., De Baerdemaeker, J., Bellon, V., 1996. Finite nondestructive sensing of firmness. Trans. ASABE 39(3): 1057 1065. of the melon for
  • Lu, R., Abbott, J.A., 1997. Finite element modelling of transient responses of apples to impulse excitation. Trans. ASAE, 40: 1395–1406.
  • Hernandez, L.F., Belles, P.M., 2007. A 3-D finite element analysis of the sunflower (Helianthus annuus L.) fruit. Biomechanical approach for the improvement of its hullability. Journal of Food Engineering 78: 861-869.
  • Kabas, O., Celik, H.K., Ozmerzi, A., Akinci, I., 2008. Drop test simulation of a sample tomato with finite element method. J. Sci. Food Agric. 88: 1537-1541.
  • Celik, H.K., Rennie, A.E.W., Akinci, I., 2011. Deformation behaviour simulation of an apple under drop case by finite element method. Journal of Food Engineering 104(2): 293-298.
  • Fabbri, A., Cevoli, C., Cocci, E., Rocculi, P., 2011. Determination of the CO2 mass diffusivity of egg components by finite element model inversion. Food Research International 44(1): 204-208.
  • Xu, H., Yan, S., Wang, Y., Liu, M., 2012. Study on the walnut mechanical characteristics and shucking technology based on finite element analysis. Computer Agriculture. V, 5th IFIP TC 5/SIG 5.1 Conference, CCTA 2011, Beijing, China, October 29-31, 2011, Proceedings, Part II, pp 577-586. in
  • Ihueze, C.C., Okafor, C.E., Ogbobe, P.O., 2013. Finite design for critical stresses of compressed biomaterials under transportation. Proceedings of the World Congress on Engineering 2013, Vol III, WCE 2013, July 3-5, 2013, London, U.K.
  • Petru, M., Novák, O., Herák, D., Simanjuntak, S., 2012. Finite element method model of the mechanical behaviour of Jatropha Curcas L. seed under Engineering 111(4): 412-421. loading. Biosystems
  • Tinoco, H.A., Ocampo, D.A., Peña, F.M., Sanz- Uribe, J.R., 2014. Finite element modal analysis of the fruit-peduncle of Coffea arabica L. var. colombia mechanical properties. Computers and Electronics in Agriculture 108: 17-27. its geometrical and
  • Guessasma, S., Nouri, H., 2015. Compression behaviour of bread crumb up to densification investigated using X-ray tomography and finite element computation. Food Research International 72: 140-148.
  • Fabbri, A., Chiara Cevoli, C., 2016. Rheological parameters estimation of non-Newtonian food fluids by finite elements model inversion. Journal of Food Engineering 169: 172-178.
  • ASAE, 2012. S368.4 W/Corr. 1 DEC2000 R2012. Compression test of food materials of convex shape. American Society of Agricultural Engineers (ASAE) Standards.
  • Shelef, L., Mohsenin, N. N., 1967. Evaluation of modulus of elasticity of wheat grain. Cereal Chem. 44 (4): 393 402.
  • Mohsenin, N.N., 1986. Physical properties of plant and animal materials. 2nd Ed. Gordon and Breach Science Publishers, New York, 891 p.
  • Sitkei, G., 1986. Mechanics of Agricultural Materials. Hungary: Elsevier Science Publisher.
  • Blahovec, J., 1988. Mechanical properties of some plant materials. Journal of Materials Science 23: 3588-3593.
  • Blahovec, J., 1989. Strength and elasticity of some plant materials. 4th International Conference Physical Properties of Agricultural Materials and Their Influence on Technological Processes (Sept. 4-6), Rostock, Germany, 60-66.
  • Stroshine, R., 1998. Physical properties of agricultural material and food products. West Lafayette: Dept. of Agricultural Engineering, Purdue Univ. Press. New York, USA, 296 p.
  • Ihueze, C.C., Mgbemena, C.E., 2015. Design for limit stresses of orange fruit (Citrus Sinensis) under axial and radial compression as related to transportation and storage design. Journal of the Saudi DOI:10.1016/j.jssas.2015.02.005. Agricultural Sciences [32] Pandey, P.C., 2016. Continuum Damage Mechanics: Review of Plasticity Concepts. NPTEL - Civil Engineering Lecture Notes, Module 4 (Lectures URL: http://www.nptel.ac.in/courses/105108072/4. (date of access: 01.012016). Available
  • Finney, E.E., 1963. The viscoelastic behaviour of the potatoe, Solanum tuberosum, under quasi- static loading. Ph.D. Thesis. Michigan State University, East Lansing, USA.
  • Wang, C.-H., Zhang, L., Mai, Y.-W., 1995. Deformation and fracture of Macadamia nuts (part: 1). Int. J. Fract. 69(1): 51-65.
  • Cakir, E., Alayunt, F., Ozden, K., 2002. A study on the determination of Poisson's ratio and modulus of elasticity of some onion varieties. Asian Journal of Plant Sciences 1(4): 376-378.
  • Grotte, M., Duprat, F., Piétri, E., Loonis, D., 2002. Young's modulus, Poisson's ratio, and lame's coefficients of golden delicious apple. International Journal of Food Properties 5(2): 333-349.
  • Burubai, W., Amula, E., Davies, R.M., Etekpe, G. W.W., Daworiye, S.P., 2008. Determination of Poisson’s ratio and elastic modulus of African nutmeg (Monodora myristica). Int. Agrophysics 22: 99-102.
  • Patel, N.D, Grosse, I., Sweeney, D., Strait, D.S., Lucas, P.W., Wright, B., Godfrey, L.R., 2008. An efficient method for predicting fracture of hard food source. Proceedings of IMECE2008 International Mechanical Engineering Congress and Exposition, October 31-November 6, 2008, Boston, Massachusetts, USA. ASME
  • Boac, J.M., Casada, M.E., Maghirang, E.R., Harner III, J.P., 2010. Material and interaction properties of selected grains and oilseeds for modelling discrete particles. 53(4): 1201-1216. of the ASABE
  • Khodabakhshian, R., Emadi, B., 2011. Determination of the modulus of elasticity in agricultural seeds on the basis of elasticity theory. Middle-East 7(3): 367-373. Scientific Research
  • Kiani, M.K.D., Maghsoudi, H., Minaei, S., 2011. Determination of Poisson’s ratio and Young’s modulus of red bean grains. Journal of Food Process Engineering 34: 1573-1583.
  • Khodabakhshian, R., 2012. Poisson’s ratio of pumpkin seeds and their kernels as a function of variety, size, moisture content and loading rate. Agric Eng Int, CIGR Journal 14(3): 203-209.
  • Ipate, G., Ciulică, L. G., Rus, F. 2013. Numerical modelling and simulation of cutting vegetable products. 41(3): 5-10. Engineering
  • Cardenas, W.M., Stroshine, R.L., 1991. Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE 34(3): 920-929.
  • SolidWorks Documentation, 2010. SolidWorks simulation premium: nonlinear. Training Manual Serial Systemes SolidWorks Corporation, USA. Dassault
  • Wakabayashi, N., Ona, M., Suzuki T., Igarashi, Y., 2008. Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry 36: 463-47.
  • Lee, H-H., 2012. Finite element simulation with ANSYS Workbench 14. SDC Publications, 608 p.
  • Wu, S.R., Gu, L., 2012. Introduction to the explicit finite element method for nonlinear transient dynamics. Wiley Publication, 352 p.
  • ANSYS Documentation, 2015. Release notes: Explicit dynamics analysis. Release 16.2. ANSYS Inc.
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H Kursat Celik This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 14 Issue: 1

Cite

APA Celik, H. K. (2016). Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels. Akademik Gıda, 14(1), 1-7.
AMA Celik HK. Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels. Akademik Gıda. March 2016;14(1):1-7.
Chicago Celik, H Kursat. “Non-Linear FEM Based Compression Simulation of Pecan Fruit Kernels”. Akademik Gıda 14, no. 1 (March 2016): 1-7.
EndNote Celik HK (March 1, 2016) Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels. Akademik Gıda 14 1 1–7.
IEEE H. K. Celik, “Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels”, Akademik Gıda, vol. 14, no. 1, pp. 1–7, 2016.
ISNAD Celik, H Kursat. “Non-Linear FEM Based Compression Simulation of Pecan Fruit Kernels”. Akademik Gıda 14/1 (March 2016), 1-7.
JAMA Celik HK. Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels. Akademik Gıda. 2016;14:1–7.
MLA Celik, H Kursat. “Non-Linear FEM Based Compression Simulation of Pecan Fruit Kernels”. Akademik Gıda, vol. 14, no. 1, 2016, pp. 1-7.
Vancouver Celik HK. Non-linear FEM Based Compression Simulation of Pecan Fruit Kernels. Akademik Gıda. 2016;14(1):1-7.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).