Review
BibTex RIS Cite

Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar

Year 2021, Volume: 19 Issue: 2, 221 - 233, 01.08.2021
https://doi.org/10.24323/akademik-gida.977318

Abstract

Yenilebilir film ve kaplamalar gıdaları fiziksel, kimyasal ve mikrobiyolojik hasarlardan korumanın yanı sıra çeşitli antimikrobiyallerin gıda sistemlerinde kullanımında bir taşıyıcı olarak da işlev görmektedir. Literatürde yenilebilir film ve kaplamarın yapısına birçok farklı bileşik eklenerek gıdaların raf ömürlerinin güvenli bir şekilde uzatılması birçok araştırmacı tarafından çalışılmıştır. Son yıllarda ise güçlü ve geniş antimikrobiyal aktivite spektrumuna sahip olan ve tatsız, kokusuz ve beyaz toz formda olması nedeniyle kullanım kolaylığı sağlayan etil laurol arjinat ön plana çıkmaktadır. Etil laurol arjinatın yenilebilir film ve kaplamalara dahil edilerek etkinliğinin incelenmesi nispeten yeni bir çalışma alanı olsa da elde edilen sonuçlar incelendiğinde etil laurol arjinatın bu sistemlerin hem fiziko-kimyasal hem de antimikrobiyal etkisini önemli ölçüde arttırdığı bilinmektedir. Maddenin yasal kullanım sınırlarının düşük olması, bu ajanın yenilebilir film ve kaplamalar ile birlikte gıda sistemlerine uygulanması hem düşük miktarların gerekliliği hem de yavaş salımına bağlı olarak etkisinin uzun süreler korunabilmesi önemli avantajlar sunmaktadır. Bu derlemede, etil laurol arjinat ile zenginleştirilmiş yenilebilir film ve kaplamalar hakkında bilgi verilmektedir.

References

  • [1] Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., Chiralt, A. (2014). Physical and bioactive properties of corn starch–buttermilk edible films. Journal of Food Engineering, 141, 27-36.
  • [2] Byun, Y., Kim, Y.T. (2014). Bioplastics for food packaging: chemistry and physics. In Innovations in food packaging, Edited by J.H. Han, Academic Press, 353-368.
  • [3] Cazón, P., Velazquez, G., Ramírez, J. A., Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
  • [4] Chouhan, S., Sharma, K., Guleria, S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 4(3), 58.
  • [5] Malhotra, B., Keshwani, A., Kharkwal, H. (2015). Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology, 6, 1-9.
  • [6] Trinetta, V., Floros, J.D., Cutter, C.N. (2010). Sakacin a‐containing pullulan film: an active packaging system to control epidemic clones of Listeria monocytogenes in ready‐to‐eat foods. Journal of Food Safety, 30(2), 366-381.
  • [7] Mangalassary, S., Han, I., Rieck, J., Acton, J., Dawson, P. (2008). Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiology, 25(7), 866-870.
  • [8] Seol, K.H., Lim, D.G., Jang, A., Jo, C., Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science, 83(3), 479-483.
  • [9] Valdés, A., Burgos, N., Jiménez, A., Garrigós, M.C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865-886.
  • [10] Solak, A.O., Dyankova, S.M. (2014). Composite films from sodium alginate and high methoxyl pectin-physicochemical properties and biodegradation in soil. Ecologia Balkanica, 6(2).
  • [11] Martins, J.T., Cerqueira, M.A., Souza, B.W., Carmo Avides, M.D., Vicente, A.A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58(3), 1884-1891.
  • [12] Özdestan Ocak, Ö., Demircan, B. (2020). Transportation of flavorings and bioactive substances in food systems with edible films and coatings and their effects on functionality. Pamukkale University Journal of Engineering Sciences, 26(7), 1245-1256.
  • [13] Gaikwad, K.K., Lee, S.M., Lee, J.S., Lee, Y.S. (2017). Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706-1716.
  • [14] Demircan, B., Özdestan Ocak, Ö. (2020). Effects of lemon essential oil and ethyl lauroyl arginate on the physico-chemical and mechanical properties of chitosan films for mackerel fillet coating application. Journal of Food Measurement and Characterization, 19(11), 1-10.
  • [15] Dehghani, S., Hosseini, S.V., Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513.
  • [16] Poverenov, E., Rutenberg, R., Danino, S., Horev, B., Rodov, V. (2014). Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: Layer-by-Layer vs. blended formulations. Food and Bioprocess Technology, 7(11), 3319-3327.
  • [17] Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A., Fernandes, F.M.B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565-572.
  • [18] Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., Kołodziejska, I. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 707-712.
  • [19] Bonnaud, M., Weiss, J., McClements, D.J. (2010). Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry, 58(17), 9770-9777.
  • [20] Kang, J., Stasiewicz, M.J., Murray, D., Boor, K.J., Wiedmann, M., Bergholz, T.M. (2014). Optimization of combinations of bactericidal and bacteriostatic treatments to control Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 179, 1-9.
  • [21] Kashiri, M., Cerisuelo, J.P., Domínguez, I., López-Carballo, G., Hernández-Muñoz, P., Gavara, R. (2016). Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, 61, 547-554.
  • [22] Petkoska, A.T., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981.
  • [23] Theinsathid, P., Visessanguan, W., Kruenate, J., Kingcha, Y., Keeratipibul, S. (2012). Antimicrobial activity of lauric arginate‐coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. Journal of Food Science, 77(2), 142-149.
  • [24] Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Gavara, R., Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its application to fresh chicken. International Journal of Food Microbiology, 165(3), 339-345.
  • [25] Kashiri, M., López-Carballo, G., Hernández-Muñoz, P., Gavara, R. (2019). Antimicrobial packaging based on a LAE containing zein coating to control foodborne pathogens in chicken soup. International Journal of Food Microbiology, 306, 108272.
  • [26] Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248.
  • [27] Demircan, B., Özdestan Ocak, (2019). Gıda katkı maddelerinin yenilebilir film ve kaplamalar kullanılarak taşınmasının günümüzde ve gelecekteki uygulama potansiyeli. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 130-150.
  • [28] Campos, C.A., Gerschenson, L.N., Flores, S.K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849-875.
  • [29] Vásconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J., Gerschenson, L.N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769.
  • [30] Broumand, A., Emam-Djomeh, Z., Hamedi, M., Razavi, S.H. (2011). Antimicrobial, water vapour permeability, mechanical and thermal properties of casein based Zataraia multiflora Boiss. extract containing film. LWT-Food Science and Technology, 44(10), 2316-2323.
  • [31] Janjarasskul, T., Krochta, J.M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415-448.
  • [32] Odila Pereira, J., Soares, J., Costa, E., Silva, S., Gomes, A., Pintado, M. (2019). Characterization of edible films based on alginate or whey protein incorporated with Bifidobacterium animalis subsp. lactis BB-12 and prebiotics. Coatings, 9(8), 493.
  • [33] Benbettaïeb, N., Karbowiak, T., Debeaufort, F. (2019). Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition, 59(7), 1137-1153.
  • [34] Valencia, G.A., Luciano, C.G., Fritz, A.R.M. (2019). Smart and active edible coatings based on biopolymers. Polymers for Agri-Food Applications, 391-416.
  • [35] Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Freire, C.S. (2018). A concise guide to active agents for active food packaging. Trends in Food Science Technology, 80, 212-222.
  • [36] Yousuf, B., Qadri, O.S. (2020). Preservation of fresh-cut fruits and vegetables by edible coatings. Fresh-Cut Fruits and Vegetables, 225-242.
  • [37] Donsì, F., Marchese, E., Maresca, P., Pataro, G., Vu, K.D., Salmieri, S., Ferrari, G. (2015). Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology, 106, 21-32.
  • [38] Espitia, P.J., Avena‐Bustillos, R.J., Du, W.X., Chiou, B.S., Williams, T.G., Wood, D., Soares, N.F. (2014). Physical and antibacterial properties of açaí edible films formulated with thyme essential oil and apple skin polyphenols. Journal of Food Science, 79(5), 903-910.
  • [39] Kadzińska, J., Bryś, J., Ostrowska-Ligęza, E., Estéve, M., Janowicz, M. (2020). Influence of vegetable oils addition on the selected physical properties of apple–sodium alginate edible films. Polymer Bulletin, 77(2), 883-900.
  • [40] Salvia-Trujillo, L., Rojas-Graü, M.A., Soliva-Fortuny, R., Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8-16.
  • [41] Šuput, D., Lazić, V., Pezo, L., Markov, S., Vaštag, Ž., Popović, L., Popović, S. (2016). Characterization of starch edible films with different essential oils addition. Polish Journal of Food and Nutrition Sciences, 66(4), 277-286.
  • [42] Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J.A., Nunes, M.L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT-Food Science and Technology, 59(1), 533-539.
  • [43] Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435.
  • [44] Xiong, Y., Chen, M., Warner, R.D., Fang, Z. (2020). Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control, 110, 107018.
  • [45] Arancibia, M.Y., López-Caballero, M.E., Gómez-Guillén, M.C., Montero, P. (2014). Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control, 44, 7-15.
  • [46] Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387-392.
  • [47] Musso, Y.S., Salgado, P.R., Mauri, A.N. (2017). Smart edible films based on gelatin and curcumin. Food Hydrocolloids, 66, 8-15.
  • [48] García Domínguez, J.J., Infante, M.R., Erra, P., Julia, M.R. (1983). N-alpha-acil-L-alkylaminoguanidinic acids and their salts surfactants with antimicrobial action. Spanish Patent, ES, 512643-A1.
  • [49] Demircan, B., Özdestan Ocak, Ö. (2019). Antimicrobial activity, mechanism of effect and usage potential of ethyl lauroyl arginate in food systems. Pamukkale University Journal of Engineering Sciences, 25(7), 854-863.
  • [50] EFSA Panel on Food Additives and Flavourings (EFSA FAF Panel), Younes, M., Aquilina, G., Engel, K.H., Fowler, P., Frutos Fernandez, M.J., Castle, L. (2019). Safety of ethyl lauroyl arginate (E 243) as a food additive in the light of the new information provided and the proposed extension of use. EFSA Journal, 17(3), e05621.
  • [51] Kawamura, Y., Whitehouse, B. (2008). Ethyl Lauroyl Arginate-chemical and technical assessment. 69th JEFCA, FAO/WHO Expert Committee on Food Additives, JEFCA Monographs.
  • [52] Ma, Q., Davidson, P.M., Zhong, Q. (2020). Properties and potential food applications of Lauric arginate as a cationic antimicrobial. International Journal of Food Microbiology, 315, 108417.
  • [53] European Food Safety Authority (EFSA). (2007). Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to an application on the use of ethyl lauroyl arginate as a food additive. EFSA Journal, 5(7), 1-27.
  • [54] FDA, U. (2005). Agency response letter GRAS notice no. GRN 000164. http://wayback.archive-it.org/7993/20171031052522/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM268847.pdf
  • [55] Becerril, R., Manso, S., Nerin, C., Gómez-Lus, R. (2013). Antimicrobial activity of lauroyl arginate ethyl (LAE), against selected food-borne bacteria. Food Control, 32(2), 404-408.
  • [56] Lingbeck, J.M., Cordero, P., O'BRYAN, C.A., Johnson, M.G., Ricke, S.C., Crandall, P.G. (2014). Temperature effects on the antimicrobial efficacy of condensed smoke and lauric arginate against Listeria and Salmonella. Journal of Food Protection, 77(6), 934-940.
  • [57] Ma, Q., Davidson, P.M., Zhong, Q. (2013). Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk. International Journal of Food Microbiology, 166(1), 77-84.
  • [58] Lavieri, N.A., Sebranek, J.G., Brehm-Stecher, B.F., Cordray, J.C., Dickson, J.S., Horsch, A.M., Mendonca, A.F. (2014). Investigating the control of Listeria monocytogenes on alternatively-cured frankfurters using natural antimicrobial ingredients or post-lethality interventions. Meat Science, 97(4), 568-574.
  • [59] Nair, D.V., Nannapaneni, R., Kiess, A., Mahmoud, B., Sharma, C.S. (2014). Antimicrobial efficacy of lauric arginate against Campylobacter jejuni and spoilage organisms on chicken breast fillets. Poultry Science, 93(10), 2636-2640.
  • [60] Sommers, C., Mackay, W., Geveke, D., Lammenes, B., Pulsfus, S. (2012). Inactivation of Listeria innocua on frankfurters by flash pasteurization and lauric arginate ester. Journal of Food Processing and Technology, 3, 1-4.
  • [61] Luchansky, J.B., Call, J.E., Hristova, B., Rumery, L., Yoder, L., Oser, A. (2005). Viability of Listeria monocytogenes on commercially-prepared hams surface treated with acidic calcium sulfate and lauric arginate and stored at 4°C. Meat Science, 71(1), 92-99.
  • [62] Taormina, P.J., Dorsa, W.J. (2009). Short-term bactericidal efficacy of lauric arginate against Listeria monocytogenes present on the surface of frankfurters. Journal of Food Protection, 72(6), 1216-1224.
  • [63] Stopforth, J.D., Visser, D., Zumbrink, R., Van Dijk, L., Bontenbal, E.W. (2010). Control of Listeria monocytogenes on cooked cured ham by formulation with a lactate-diacetate blend and surface treatment with lauric arginate. Journal of Food Protection, 73(3), 552-555.
  • [64] Techathuvanan, C., Reyes, F., David, J.R., Davidson, P.M. (2014). Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms. Journal of Food Protection, 77(2), 269-275.
  • [65] Loeffler, M., McClements, D.J., McLandsborough, L., Terjung, N., Chang, Y., Weiss, J. (2014). Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of Applied Microbiology, 117(1), 28-39.
  • [66] Sadekuzzaman, M., Yang, S., Kim, H.S., Mizan, M.F.R., Ha, S.D. (2017). Evaluation of a novel antimicrobial (lauric arginate ester) substance against biofilm of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. International Journal of Food Science Technology, 52(9), 2058-2067.
  • [67] Fu, Y., Deering, A.J., Bhunia, A.K., Yao, Y. (2017). Biofilm of Escherichia coli O157: H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite. International Journal of Food Microbiology, 260, 11-16.
  • [68] Fernández, C.E., Aspiras, M., Dodds, M.W., González-Cabezas, C., Rickard, A. H. (2018). Combinatorial effect of magnolia bark extract and ethyl lauroyl arginate against multi-species oral biofilms: Food additives with the potential to prevent biofilm-related oral diseases. Journal of Functional Foods, 47, 48-55.
  • [69] Kim, T.S., Ham, S.Y., Park, B.B., Byun, Y., Park, H.D. (2017). Lauroyl arginate ethyl blocks the iron signals necessary for Pseudomonas aeruginosa biofilm development. Frontiers in Microbiology, 8, 970.
  • [70] Chang, Y., McLandsborough, L., McClements, D.J. (2015). Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry, 172, 298-304.
  • [71] Zheng, Z. (2014). Ingredient technology for food preservation. Industrial Biotechnology, 10(1), 28-33.
  • [72] Wang, L., Zhao, L., Yuan, J., Jin, T.Z. (2015). Application of a novel antimicrobial coating on roast beef for inactivation and inhibition of Listeria monocytogenes during storage. International Journal of Food Microbiology, 211, 66-72.
  • [73] Nübling, S., Hägele, F., Wohlt, D., Graf, B., Schweiggert, R.M., Carle, R., Weiss, A. (2017). Effects of Quillaja saponaria extract and Nα-lauroyl-l-arginine ethyl ester on reducing selected foodborne pathogens in vitro and maintaining quality of fresh-cut endive (Cichorium endivia L.) at pilot plant scale. Food Control, 73, 393-400.
  • [74] Hawkins, D.R., Rocabayera, X., Ruckman, S., Segret, R., Shaw, D. (2009). Metabolism and pharmacokinetics of ethyl Nα-lauroyl-L-arginate hydrochloride in human volunteers. Food and Chemical Toxicology, 47(11), 2711-2715.
  • [75] Ruckman, S.A., Rocabayera, X., Borzelleca, J.F., Sandusky, C.B. (2004). Toxicological and metabolic investigations of the safety of N-α-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, 42(2), 245-259.
  • [76] Aznar, M., Gómez-Estaca, J., Vélez, D., Devesa, V., Nerín, C. (2013). Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food and Chemical Toxicology, 56, 363-370.
  • [77] Adams, C. (2012). Determination of the minimal inhibitory concentration of lauric arginate against three strains of Salmonella enterica, 2012 Annual Meeting of the International Association of Food Protection.
  • [78] Soni, K.A., Nannapaneni, R., Schilling, M.W., Jackson, V. (2010). Bactericidal activity of lauric arginate in milk and Queso Fresco cheese against Listeria monocytogenes cold growth. Journal of Dairy Science, 93(10), 4518-4525.
  • [79] Manso, S., Nerin, C., Gómez-Lus, R. (2011). Antifungal activity of the essential oil of cinnamon (Cinnamomum zeylanicum), oregano (Origanum vulgare) and lauramide argine ethyl ester (LAE) against the mold aspergillus flavus CECT 2949. Italian Journal of Food Science, 23, 151.
  • [80] Ebner, C., Morgan, A., Manuel, C. (2021), Food safety and quality-based shelf life of perishable foods. In Food Microbiology and Food Safety, Edited by P.J. Taormina, M.D. Hardin, Springer, Cham, 105-134p.
  • [81] Muriel-Galet, V., Carballo, G.L., Hernández-Muñoz, P., Gavara, R. (2016). Ethyl lauroyl arginate (LAE): Usage and potential in antimicrobial packaging. In Antimicrobial Food Packaging, Edited by J.B. Velázquez, Academic Press, 313-318p.
  • [82] Rubilar, J.F., Candia, D., Cobos, A., Díaz, O., Pedreschi, F. (2016). Effect of nanoclay and ethyl-Nα-dodecanoyl-l-arginate hydrochloride (LAE) on physico-mechanical properties of chitosan films. LWT-Food Science and Technology, 72, 206-214.
  • [83] Demircan, B., Özdestan Ocak, Ö. (2020). Yenilebilir Film ve Kaplamalarda Sentetik Katkı Maddesi Olarak Etil Laurol Arjinatın Kullanımı, Türkiye 13. Gıda Kongresi, 21-23 Ekim, 2020, Çanakkale, Türkiye, Bildiri Özetleri, 125s.
  • [84] Ochoa, T.A., Almendárez, B.E.G., Reyes, A.A., Pastrana, D.M.R., López, G.F.G., Belloso, O.M., Regalado-González, C. (2017). Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and Bioprocess Technology, 10(1), 103-114.
  • [85] Muriel-Galet, V., Lopez-Carballo, G., Gavara, R., Hernández-Muñoz, P. (2015). Antimicrobial effectiveness of lauroyl arginate incorporated into ethylene vinyl alcohol copolymers to extend the shelf-life of chicken stock and surimi sticks. Food and Bioprocess Technology, 8(1), 208-217.
  • [86] Hassan, A.H., Cutter, C.N. (2020). Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods. International Journal of Food Microbiology, 320, 108519.
  • [87] Moreno, O., Gil, À., Atarés, L., Chiralt, A. (2017). Active starch-gelatin films for shelf-life extension of marinated salmon. LWT-Food Science and Technology, 84, 189-195.
  • [88] Moreno, O., Cárdenas, J., Atarés, L., Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178, 147-158.
  • [89] Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H.W., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39.
  • [90] Ma, Q., Zhang, Y., Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Science and Technology, 65, 173-179.
  • [91] Guo, M., Jin, T.Z., Yang, R. (2014). Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food and Bioprocess Technology, 7(11), 3293-3307.
  • [92] Pattanayaiying, R., Sane, A., Photjanataree, P., Cutter, C.N. (2019). Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. International Journal of Food Microbiology, 290, 59-67.
  • [93] Otero‐Tuárez, V., Fernández‐Pan, I., Ignacio Maté, J. (2020). Effect of the presence of ethyl lauroyl arginate on the technological properties of edible fish gelatin films. International Journal of Food Science and Technology, 55(5), 2113-2121.
  • [94] Chen, W., Golden, D.A., Critzer, F.J., Davidson, P.M. (2015). Antimicrobial activity of cinnamaldehyde, carvacrol, and lauric arginate against Salmonella tennessee in a glycerol-sucrose model and peanut paste at different fat concentrations. Journal of Food Protection, 78(8), 1488-1495.
  • [95] Asker, D., Weiss, J., McClements, D.J. (2009). Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin): isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, 25(1), 116-122.
  • [96] Guo, M., Yadav, M.P., Jin, T.Z. (2017). Antimicrobial edible coatings and films from micro-emulsions and their food applications. International Journal of Food Microbiology, 263, 9-16.
  • [97] Escamilla-García, M., Rodríguez-Hernández, M. J., Hernández-Hernández, H.M., Delgado-Sánchez, L.F., García-Almendárez, B.E., Amaro-Reyes, A., Regalado-González, C. (2018). Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings, 8(9), 318.
  • [98] Jin, T.Z., Chen, W., Gurtler, J.B., Fan, X. (2020). Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh‐cut apples. Journal of Food Safety, 40(4), e12802.
  • [99] Sun, Z., Hao, J., Yang, H., Chen, H. (2018). Effect of chitosan coatings enriched with lauroyl arginate ethyl and montmorillonite on microbial growth and quality maintenance of minimally processed table grapes (Vitis vinifera L. Kyoho) during cold storage. Food and Bioprocess Technology, 11(10), 1853-1862.
  • [100] De Leo, R., Quartieri, A., Haghighi, H., Gigliano, S., Bedin, E., Pulvirenti, A. (2018). Application of pectin‐alginate and pectin‐alginate‐laurolyl arginate ethyl coatings to eliminate Salmonella enteritidis cross contamination in egg shells. Journal of Food Safety, 38(6), e12567.
  • [101] Pattanayaiying, R., Aran, H., Cutter, C.N. (2015). Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods. International Journal of Food Microbiology, 207, 77-82.
  • [102] Motta, J.F.G., de Souza, A.R., Gonçalves, S.M., Madella, D.K.S.F., de Carvalho, C.W.P., Vitorazi, L., de Melo, N.R. (2020). Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food and Bioprocess Technology, 13(12), 2082-2093.

Edible Films and Coatings Enriched with Ethyl Lauroyl Arginate

Year 2021, Volume: 19 Issue: 2, 221 - 233, 01.08.2021
https://doi.org/10.24323/akademik-gida.977318

Abstract

Edible films and coatings may function as a carrier for various antimicrobials in food systems besides their protective activity for foods against physical, chemical and microbiological damages. In the literature, many studies have determined the safe extension of the shelf life of foods by adding many different compounds to the structure of edible films and coatings. In recent years, ethyl lauroyl arginate, which has a strong and wide antimicrobial activity spectrum and provides ease of use with its tasteless, odorless and white powder form, has received increased attention. Although the study of the effectiveness of ethyl lauroyl arginate by including itself in edible films and coatings is a relatively new field of study, it is known that it significantly increases both the physico-chemical and antimicrobial effects of food systems. The legal limits of this substance are low, and its application to food systems together with edible films and coatings offers significant advantages due to the requirement of low amounts and the ability to maintain its effect for a long time because of its slow release. In this review, edible films and coatings enriched with ethyl lauroyl arginate are reviewed.

References

  • [1] Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., Chiralt, A. (2014). Physical and bioactive properties of corn starch–buttermilk edible films. Journal of Food Engineering, 141, 27-36.
  • [2] Byun, Y., Kim, Y.T. (2014). Bioplastics for food packaging: chemistry and physics. In Innovations in food packaging, Edited by J.H. Han, Academic Press, 353-368.
  • [3] Cazón, P., Velazquez, G., Ramírez, J. A., Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
  • [4] Chouhan, S., Sharma, K., Guleria, S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 4(3), 58.
  • [5] Malhotra, B., Keshwani, A., Kharkwal, H. (2015). Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology, 6, 1-9.
  • [6] Trinetta, V., Floros, J.D., Cutter, C.N. (2010). Sakacin a‐containing pullulan film: an active packaging system to control epidemic clones of Listeria monocytogenes in ready‐to‐eat foods. Journal of Food Safety, 30(2), 366-381.
  • [7] Mangalassary, S., Han, I., Rieck, J., Acton, J., Dawson, P. (2008). Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiology, 25(7), 866-870.
  • [8] Seol, K.H., Lim, D.G., Jang, A., Jo, C., Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science, 83(3), 479-483.
  • [9] Valdés, A., Burgos, N., Jiménez, A., Garrigós, M.C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865-886.
  • [10] Solak, A.O., Dyankova, S.M. (2014). Composite films from sodium alginate and high methoxyl pectin-physicochemical properties and biodegradation in soil. Ecologia Balkanica, 6(2).
  • [11] Martins, J.T., Cerqueira, M.A., Souza, B.W., Carmo Avides, M.D., Vicente, A.A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58(3), 1884-1891.
  • [12] Özdestan Ocak, Ö., Demircan, B. (2020). Transportation of flavorings and bioactive substances in food systems with edible films and coatings and their effects on functionality. Pamukkale University Journal of Engineering Sciences, 26(7), 1245-1256.
  • [13] Gaikwad, K.K., Lee, S.M., Lee, J.S., Lee, Y.S. (2017). Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706-1716.
  • [14] Demircan, B., Özdestan Ocak, Ö. (2020). Effects of lemon essential oil and ethyl lauroyl arginate on the physico-chemical and mechanical properties of chitosan films for mackerel fillet coating application. Journal of Food Measurement and Characterization, 19(11), 1-10.
  • [15] Dehghani, S., Hosseini, S.V., Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513.
  • [16] Poverenov, E., Rutenberg, R., Danino, S., Horev, B., Rodov, V. (2014). Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: Layer-by-Layer vs. blended formulations. Food and Bioprocess Technology, 7(11), 3319-3327.
  • [17] Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A., Fernandes, F.M.B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565-572.
  • [18] Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., Kołodziejska, I. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 707-712.
  • [19] Bonnaud, M., Weiss, J., McClements, D.J. (2010). Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry, 58(17), 9770-9777.
  • [20] Kang, J., Stasiewicz, M.J., Murray, D., Boor, K.J., Wiedmann, M., Bergholz, T.M. (2014). Optimization of combinations of bactericidal and bacteriostatic treatments to control Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 179, 1-9.
  • [21] Kashiri, M., Cerisuelo, J.P., Domínguez, I., López-Carballo, G., Hernández-Muñoz, P., Gavara, R. (2016). Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, 61, 547-554.
  • [22] Petkoska, A.T., Daniloski, D., D'Cunha, N.M., Naumovski, N., Broach, A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981.
  • [23] Theinsathid, P., Visessanguan, W., Kruenate, J., Kingcha, Y., Keeratipibul, S. (2012). Antimicrobial activity of lauric arginate‐coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. Journal of Food Science, 77(2), 142-149.
  • [24] Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Gavara, R., Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its application to fresh chicken. International Journal of Food Microbiology, 165(3), 339-345.
  • [25] Kashiri, M., López-Carballo, G., Hernández-Muñoz, P., Gavara, R. (2019). Antimicrobial packaging based on a LAE containing zein coating to control foodborne pathogens in chicken soup. International Journal of Food Microbiology, 306, 108272.
  • [26] Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3), 237-248.
  • [27] Demircan, B., Özdestan Ocak, (2019). Gıda katkı maddelerinin yenilebilir film ve kaplamalar kullanılarak taşınmasının günümüzde ve gelecekteki uygulama potansiyeli. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 130-150.
  • [28] Campos, C.A., Gerschenson, L.N., Flores, S.K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849-875.
  • [29] Vásconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J., Gerschenson, L.N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769.
  • [30] Broumand, A., Emam-Djomeh, Z., Hamedi, M., Razavi, S.H. (2011). Antimicrobial, water vapour permeability, mechanical and thermal properties of casein based Zataraia multiflora Boiss. extract containing film. LWT-Food Science and Technology, 44(10), 2316-2323.
  • [31] Janjarasskul, T., Krochta, J.M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415-448.
  • [32] Odila Pereira, J., Soares, J., Costa, E., Silva, S., Gomes, A., Pintado, M. (2019). Characterization of edible films based on alginate or whey protein incorporated with Bifidobacterium animalis subsp. lactis BB-12 and prebiotics. Coatings, 9(8), 493.
  • [33] Benbettaïeb, N., Karbowiak, T., Debeaufort, F. (2019). Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition, 59(7), 1137-1153.
  • [34] Valencia, G.A., Luciano, C.G., Fritz, A.R.M. (2019). Smart and active edible coatings based on biopolymers. Polymers for Agri-Food Applications, 391-416.
  • [35] Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Freire, C.S. (2018). A concise guide to active agents for active food packaging. Trends in Food Science Technology, 80, 212-222.
  • [36] Yousuf, B., Qadri, O.S. (2020). Preservation of fresh-cut fruits and vegetables by edible coatings. Fresh-Cut Fruits and Vegetables, 225-242.
  • [37] Donsì, F., Marchese, E., Maresca, P., Pataro, G., Vu, K.D., Salmieri, S., Ferrari, G. (2015). Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology, 106, 21-32.
  • [38] Espitia, P.J., Avena‐Bustillos, R.J., Du, W.X., Chiou, B.S., Williams, T.G., Wood, D., Soares, N.F. (2014). Physical and antibacterial properties of açaí edible films formulated with thyme essential oil and apple skin polyphenols. Journal of Food Science, 79(5), 903-910.
  • [39] Kadzińska, J., Bryś, J., Ostrowska-Ligęza, E., Estéve, M., Janowicz, M. (2020). Influence of vegetable oils addition on the selected physical properties of apple–sodium alginate edible films. Polymer Bulletin, 77(2), 883-900.
  • [40] Salvia-Trujillo, L., Rojas-Graü, M.A., Soliva-Fortuny, R., Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8-16.
  • [41] Šuput, D., Lazić, V., Pezo, L., Markov, S., Vaštag, Ž., Popović, L., Popović, S. (2016). Characterization of starch edible films with different essential oils addition. Polish Journal of Food and Nutrition Sciences, 66(4), 277-286.
  • [42] Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J.A., Nunes, M.L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT-Food Science and Technology, 59(1), 533-539.
  • [43] Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435.
  • [44] Xiong, Y., Chen, M., Warner, R.D., Fang, Z. (2020). Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control, 110, 107018.
  • [45] Arancibia, M.Y., López-Caballero, M.E., Gómez-Guillén, M.C., Montero, P. (2014). Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control, 44, 7-15.
  • [46] Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387-392.
  • [47] Musso, Y.S., Salgado, P.R., Mauri, A.N. (2017). Smart edible films based on gelatin and curcumin. Food Hydrocolloids, 66, 8-15.
  • [48] García Domínguez, J.J., Infante, M.R., Erra, P., Julia, M.R. (1983). N-alpha-acil-L-alkylaminoguanidinic acids and their salts surfactants with antimicrobial action. Spanish Patent, ES, 512643-A1.
  • [49] Demircan, B., Özdestan Ocak, Ö. (2019). Antimicrobial activity, mechanism of effect and usage potential of ethyl lauroyl arginate in food systems. Pamukkale University Journal of Engineering Sciences, 25(7), 854-863.
  • [50] EFSA Panel on Food Additives and Flavourings (EFSA FAF Panel), Younes, M., Aquilina, G., Engel, K.H., Fowler, P., Frutos Fernandez, M.J., Castle, L. (2019). Safety of ethyl lauroyl arginate (E 243) as a food additive in the light of the new information provided and the proposed extension of use. EFSA Journal, 17(3), e05621.
  • [51] Kawamura, Y., Whitehouse, B. (2008). Ethyl Lauroyl Arginate-chemical and technical assessment. 69th JEFCA, FAO/WHO Expert Committee on Food Additives, JEFCA Monographs.
  • [52] Ma, Q., Davidson, P.M., Zhong, Q. (2020). Properties and potential food applications of Lauric arginate as a cationic antimicrobial. International Journal of Food Microbiology, 315, 108417.
  • [53] European Food Safety Authority (EFSA). (2007). Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to an application on the use of ethyl lauroyl arginate as a food additive. EFSA Journal, 5(7), 1-27.
  • [54] FDA, U. (2005). Agency response letter GRAS notice no. GRN 000164. http://wayback.archive-it.org/7993/20171031052522/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM268847.pdf
  • [55] Becerril, R., Manso, S., Nerin, C., Gómez-Lus, R. (2013). Antimicrobial activity of lauroyl arginate ethyl (LAE), against selected food-borne bacteria. Food Control, 32(2), 404-408.
  • [56] Lingbeck, J.M., Cordero, P., O'BRYAN, C.A., Johnson, M.G., Ricke, S.C., Crandall, P.G. (2014). Temperature effects on the antimicrobial efficacy of condensed smoke and lauric arginate against Listeria and Salmonella. Journal of Food Protection, 77(6), 934-940.
  • [57] Ma, Q., Davidson, P.M., Zhong, Q. (2013). Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2% reduced fat milk. International Journal of Food Microbiology, 166(1), 77-84.
  • [58] Lavieri, N.A., Sebranek, J.G., Brehm-Stecher, B.F., Cordray, J.C., Dickson, J.S., Horsch, A.M., Mendonca, A.F. (2014). Investigating the control of Listeria monocytogenes on alternatively-cured frankfurters using natural antimicrobial ingredients or post-lethality interventions. Meat Science, 97(4), 568-574.
  • [59] Nair, D.V., Nannapaneni, R., Kiess, A., Mahmoud, B., Sharma, C.S. (2014). Antimicrobial efficacy of lauric arginate against Campylobacter jejuni and spoilage organisms on chicken breast fillets. Poultry Science, 93(10), 2636-2640.
  • [60] Sommers, C., Mackay, W., Geveke, D., Lammenes, B., Pulsfus, S. (2012). Inactivation of Listeria innocua on frankfurters by flash pasteurization and lauric arginate ester. Journal of Food Processing and Technology, 3, 1-4.
  • [61] Luchansky, J.B., Call, J.E., Hristova, B., Rumery, L., Yoder, L., Oser, A. (2005). Viability of Listeria monocytogenes on commercially-prepared hams surface treated with acidic calcium sulfate and lauric arginate and stored at 4°C. Meat Science, 71(1), 92-99.
  • [62] Taormina, P.J., Dorsa, W.J. (2009). Short-term bactericidal efficacy of lauric arginate against Listeria monocytogenes present on the surface of frankfurters. Journal of Food Protection, 72(6), 1216-1224.
  • [63] Stopforth, J.D., Visser, D., Zumbrink, R., Van Dijk, L., Bontenbal, E.W. (2010). Control of Listeria monocytogenes on cooked cured ham by formulation with a lactate-diacetate blend and surface treatment with lauric arginate. Journal of Food Protection, 73(3), 552-555.
  • [64] Techathuvanan, C., Reyes, F., David, J.R., Davidson, P.M. (2014). Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms. Journal of Food Protection, 77(2), 269-275.
  • [65] Loeffler, M., McClements, D.J., McLandsborough, L., Terjung, N., Chang, Y., Weiss, J. (2014). Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of Applied Microbiology, 117(1), 28-39.
  • [66] Sadekuzzaman, M., Yang, S., Kim, H.S., Mizan, M.F.R., Ha, S.D. (2017). Evaluation of a novel antimicrobial (lauric arginate ester) substance against biofilm of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. International Journal of Food Science Technology, 52(9), 2058-2067.
  • [67] Fu, Y., Deering, A.J., Bhunia, A.K., Yao, Y. (2017). Biofilm of Escherichia coli O157: H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite. International Journal of Food Microbiology, 260, 11-16.
  • [68] Fernández, C.E., Aspiras, M., Dodds, M.W., González-Cabezas, C., Rickard, A. H. (2018). Combinatorial effect of magnolia bark extract and ethyl lauroyl arginate against multi-species oral biofilms: Food additives with the potential to prevent biofilm-related oral diseases. Journal of Functional Foods, 47, 48-55.
  • [69] Kim, T.S., Ham, S.Y., Park, B.B., Byun, Y., Park, H.D. (2017). Lauroyl arginate ethyl blocks the iron signals necessary for Pseudomonas aeruginosa biofilm development. Frontiers in Microbiology, 8, 970.
  • [70] Chang, Y., McLandsborough, L., McClements, D.J. (2015). Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry, 172, 298-304.
  • [71] Zheng, Z. (2014). Ingredient technology for food preservation. Industrial Biotechnology, 10(1), 28-33.
  • [72] Wang, L., Zhao, L., Yuan, J., Jin, T.Z. (2015). Application of a novel antimicrobial coating on roast beef for inactivation and inhibition of Listeria monocytogenes during storage. International Journal of Food Microbiology, 211, 66-72.
  • [73] Nübling, S., Hägele, F., Wohlt, D., Graf, B., Schweiggert, R.M., Carle, R., Weiss, A. (2017). Effects of Quillaja saponaria extract and Nα-lauroyl-l-arginine ethyl ester on reducing selected foodborne pathogens in vitro and maintaining quality of fresh-cut endive (Cichorium endivia L.) at pilot plant scale. Food Control, 73, 393-400.
  • [74] Hawkins, D.R., Rocabayera, X., Ruckman, S., Segret, R., Shaw, D. (2009). Metabolism and pharmacokinetics of ethyl Nα-lauroyl-L-arginate hydrochloride in human volunteers. Food and Chemical Toxicology, 47(11), 2711-2715.
  • [75] Ruckman, S.A., Rocabayera, X., Borzelleca, J.F., Sandusky, C.B. (2004). Toxicological and metabolic investigations of the safety of N-α-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, 42(2), 245-259.
  • [76] Aznar, M., Gómez-Estaca, J., Vélez, D., Devesa, V., Nerín, C. (2013). Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food and Chemical Toxicology, 56, 363-370.
  • [77] Adams, C. (2012). Determination of the minimal inhibitory concentration of lauric arginate against three strains of Salmonella enterica, 2012 Annual Meeting of the International Association of Food Protection.
  • [78] Soni, K.A., Nannapaneni, R., Schilling, M.W., Jackson, V. (2010). Bactericidal activity of lauric arginate in milk and Queso Fresco cheese against Listeria monocytogenes cold growth. Journal of Dairy Science, 93(10), 4518-4525.
  • [79] Manso, S., Nerin, C., Gómez-Lus, R. (2011). Antifungal activity of the essential oil of cinnamon (Cinnamomum zeylanicum), oregano (Origanum vulgare) and lauramide argine ethyl ester (LAE) against the mold aspergillus flavus CECT 2949. Italian Journal of Food Science, 23, 151.
  • [80] Ebner, C., Morgan, A., Manuel, C. (2021), Food safety and quality-based shelf life of perishable foods. In Food Microbiology and Food Safety, Edited by P.J. Taormina, M.D. Hardin, Springer, Cham, 105-134p.
  • [81] Muriel-Galet, V., Carballo, G.L., Hernández-Muñoz, P., Gavara, R. (2016). Ethyl lauroyl arginate (LAE): Usage and potential in antimicrobial packaging. In Antimicrobial Food Packaging, Edited by J.B. Velázquez, Academic Press, 313-318p.
  • [82] Rubilar, J.F., Candia, D., Cobos, A., Díaz, O., Pedreschi, F. (2016). Effect of nanoclay and ethyl-Nα-dodecanoyl-l-arginate hydrochloride (LAE) on physico-mechanical properties of chitosan films. LWT-Food Science and Technology, 72, 206-214.
  • [83] Demircan, B., Özdestan Ocak, Ö. (2020). Yenilebilir Film ve Kaplamalarda Sentetik Katkı Maddesi Olarak Etil Laurol Arjinatın Kullanımı, Türkiye 13. Gıda Kongresi, 21-23 Ekim, 2020, Çanakkale, Türkiye, Bildiri Özetleri, 125s.
  • [84] Ochoa, T.A., Almendárez, B.E.G., Reyes, A.A., Pastrana, D.M.R., López, G.F.G., Belloso, O.M., Regalado-González, C. (2017). Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and Bioprocess Technology, 10(1), 103-114.
  • [85] Muriel-Galet, V., Lopez-Carballo, G., Gavara, R., Hernández-Muñoz, P. (2015). Antimicrobial effectiveness of lauroyl arginate incorporated into ethylene vinyl alcohol copolymers to extend the shelf-life of chicken stock and surimi sticks. Food and Bioprocess Technology, 8(1), 208-217.
  • [86] Hassan, A.H., Cutter, C.N. (2020). Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods. International Journal of Food Microbiology, 320, 108519.
  • [87] Moreno, O., Gil, À., Atarés, L., Chiralt, A. (2017). Active starch-gelatin films for shelf-life extension of marinated salmon. LWT-Food Science and Technology, 84, 189-195.
  • [88] Moreno, O., Cárdenas, J., Atarés, L., Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178, 147-158.
  • [89] Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H.W., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31-39.
  • [90] Ma, Q., Zhang, Y., Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Science and Technology, 65, 173-179.
  • [91] Guo, M., Jin, T.Z., Yang, R. (2014). Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food and Bioprocess Technology, 7(11), 3293-3307.
  • [92] Pattanayaiying, R., Sane, A., Photjanataree, P., Cutter, C.N. (2019). Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. International Journal of Food Microbiology, 290, 59-67.
  • [93] Otero‐Tuárez, V., Fernández‐Pan, I., Ignacio Maté, J. (2020). Effect of the presence of ethyl lauroyl arginate on the technological properties of edible fish gelatin films. International Journal of Food Science and Technology, 55(5), 2113-2121.
  • [94] Chen, W., Golden, D.A., Critzer, F.J., Davidson, P.M. (2015). Antimicrobial activity of cinnamaldehyde, carvacrol, and lauric arginate against Salmonella tennessee in a glycerol-sucrose model and peanut paste at different fat concentrations. Journal of Food Protection, 78(8), 1488-1495.
  • [95] Asker, D., Weiss, J., McClements, D.J. (2009). Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin): isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, 25(1), 116-122.
  • [96] Guo, M., Yadav, M.P., Jin, T.Z. (2017). Antimicrobial edible coatings and films from micro-emulsions and their food applications. International Journal of Food Microbiology, 263, 9-16.
  • [97] Escamilla-García, M., Rodríguez-Hernández, M. J., Hernández-Hernández, H.M., Delgado-Sánchez, L.F., García-Almendárez, B.E., Amaro-Reyes, A., Regalado-González, C. (2018). Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings, 8(9), 318.
  • [98] Jin, T.Z., Chen, W., Gurtler, J.B., Fan, X. (2020). Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh‐cut apples. Journal of Food Safety, 40(4), e12802.
  • [99] Sun, Z., Hao, J., Yang, H., Chen, H. (2018). Effect of chitosan coatings enriched with lauroyl arginate ethyl and montmorillonite on microbial growth and quality maintenance of minimally processed table grapes (Vitis vinifera L. Kyoho) during cold storage. Food and Bioprocess Technology, 11(10), 1853-1862.
  • [100] De Leo, R., Quartieri, A., Haghighi, H., Gigliano, S., Bedin, E., Pulvirenti, A. (2018). Application of pectin‐alginate and pectin‐alginate‐laurolyl arginate ethyl coatings to eliminate Salmonella enteritidis cross contamination in egg shells. Journal of Food Safety, 38(6), e12567.
  • [101] Pattanayaiying, R., Aran, H., Cutter, C.N. (2015). Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods. International Journal of Food Microbiology, 207, 77-82.
  • [102] Motta, J.F.G., de Souza, A.R., Gonçalves, S.M., Madella, D.K.S.F., de Carvalho, C.W.P., Vitorazi, L., de Melo, N.R. (2020). Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food and Bioprocess Technology, 13(12), 2082-2093.
There are 102 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Bahar Demircan This is me 0000-0002-6983-384X

Özgül Özdestan Ocak This is me 0000-0003-0967-8865

Publication Date August 1, 2021
Submission Date January 19, 2021
Published in Issue Year 2021 Volume: 19 Issue: 2

Cite

APA Demircan, B., & Özdestan Ocak, Ö. (2021). Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar. Akademik Gıda, 19(2), 221-233. https://doi.org/10.24323/akademik-gida.977318
AMA Demircan B, Özdestan Ocak Ö. Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar. Akademik Gıda. August 2021;19(2):221-233. doi:10.24323/akademik-gida.977318
Chicago Demircan, Bahar, and Özgül Özdestan Ocak. “Etil Laurol Arjinat Ile Zenginleştirilmiş Yenilebilir Film Ve Kaplamalar”. Akademik Gıda 19, no. 2 (August 2021): 221-33. https://doi.org/10.24323/akademik-gida.977318.
EndNote Demircan B, Özdestan Ocak Ö (August 1, 2021) Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar. Akademik Gıda 19 2 221–233.
IEEE B. Demircan and Ö. Özdestan Ocak, “Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar”, Akademik Gıda, vol. 19, no. 2, pp. 221–233, 2021, doi: 10.24323/akademik-gida.977318.
ISNAD Demircan, Bahar - Özdestan Ocak, Özgül. “Etil Laurol Arjinat Ile Zenginleştirilmiş Yenilebilir Film Ve Kaplamalar”. Akademik Gıda 19/2 (August 2021), 221-233. https://doi.org/10.24323/akademik-gida.977318.
JAMA Demircan B, Özdestan Ocak Ö. Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar. Akademik Gıda. 2021;19:221–233.
MLA Demircan, Bahar and Özgül Özdestan Ocak. “Etil Laurol Arjinat Ile Zenginleştirilmiş Yenilebilir Film Ve Kaplamalar”. Akademik Gıda, vol. 19, no. 2, 2021, pp. 221-33, doi:10.24323/akademik-gida.977318.
Vancouver Demircan B, Özdestan Ocak Ö. Etil Laurol Arjinat ile Zenginleştirilmiş Yenilebilir Film ve Kaplamalar. Akademik Gıda. 2021;19(2):221-33.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).