Comparative Bioaroma Profiles from Sugar Beet Molasses Using Saccharomyces cerevisiae and Saccharomyces boulardii Under Extended Fermentation
Year 2025,
Volume: 23 Issue: 3, 184 - 191, 30.09.2025
Furkan Demirgül
,
Nur Çebi
,
Hamza Goktas
,
Ömer Şimşek
,
Osman Sağdıç
Abstract
Flavor is a crucial factor that influences the food preferences of many consumers, and in recent years, there has been a growing consumer demand for the use of natural and ecologically sustainable flavor compounds in foods. This study investigated the volatile compound production abilities of Saccharomyces cerevisiae TGM10 and Saccharomyces cerevisiae var. boulardii S11 yeasts in sugar beet molasses, a significant by-product of the sugar industry under extended fermentation. The effect of fermentation time on the volatile compound profile was also determined. In fermentation carried out in Erlenmeyer flasks for up to 120 hours, both strains tolerated the medium containing 10% sugar beet molasses well. The volatile compound profiles of samples fermented by each strain for 96 and 120 hours were determined by GC-MS. S. cerevisiae TGM10 yielded a higher-alcohol–dominated profile, whereas S. boulardii S11 produced an ester-dominant profile. Results showed that both strains were capable of producing a variety of pleasant and valuable aroma compounds through the fermentation of sugar beet molasses. Additionally, yeast strain used in fermentation and fermentation time had significant effects on volatile compound profiles. In conclusion, S. cerevisiae TGM10 and S. boulardii S11 showed strong potential for low-cost production of bioaroma additives and might enhance flavor when employed as starter or adjunct cultures in fermented foods.
Thanks
This work was carried out without any grant from any institution. We would like to thank Adapazari Sugar Factory Inc. for supplying us with sugar beet molasses. Figure 1 was created by an author (F.D.) with BioRender.com.
References
-
[1] Liem, D.G., Russell, C.G. (2019). The influence of taste liking on the consumption of nutrient rich and nutrient poor foods. Frontiers in Nutrition, 6, 174.
-
[2] Madrera, R.R., Bedriñana, R.P., Valles, B.S. (2015). Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT-Food Science and Technology, 64, 1342-1353.
-
[3] Vandamme, E.J., Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology and Biotechnology, 77, 1323-1332.
-
[4] Mantzouridou, F., Paraskevopoulou, A. (2013). Volatile bio-ester production from orange pulp-containing medium using Saccharomyces cerevisiae. Food and Bioprocess Technology, 6, 3326-3334.
-
[5] Singh, S., Sharma, P.K., Chaturvedi, S., Kumar, P., Nannaware, A.D., Kalra, A., Rout, P.K. (2024). Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chemistry, 435, 137217.
-
[6] Hadj Saadoun, J., Bertani, G., Levante, A., Vezzosi, F., Ricci, A., Bernini, V., Lazzi, C. (2021). Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods, 10(4), 707.
-
[7] European Parliament and the Council (2008). Regulation (EC) No 1334/2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending, Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Retrieved [15.05.2025] from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008R1334
-
[8] U.S. Food and Drug Administration (2020). Code of Federal Regulations, Title 21, Section 101.22: Foods; labeling of spices, flavorings, colorings and chemical preservatives. U.S. Department of Health and Human Services. Retrieved [15.05.2025] from https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-101/section-101.22
-
[9] Karaalioğlu, O., Karagül-Yüceer, Y. (2021). Nonconventional yeasts to produce aroma compounds by using agri-food waste materials. FEMS Yeast Research, 21(8), foab063.
-
[10] Yilmaztekin, M., Cabaroglu, T., Erten, H. (2013). Effects of fermentation temperature and aeration on production of natural isoamyl acetate by Williopsis saturnus var. saturnus. BioMed Research International, 870802.
-
[11] Singh, A., Singh, A. (2022). Microbial degradation and value addition to food and agriculture waste. Current Microbiology, 79, 119.
-
[12] Hernandez‐Orte, P., Bely, M., Cacho, J., Ferreira, V. (2006) Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research, 12, 150-160.
-
[13] Mantzouridou, F.T., Paraskevopoulou, A., Lalou, S. (2015). Yeast flavour production by solid state fermentation of orange peel waste. Biochemical Engineering Journal, 101, 1-8.
-
[14] Chreptowicz, K., Sternicka, M.K., Kowalska, P.D., Mierzejewska, J. (2018). Screening of yeasts for the production of 2‐phenylethanol (rose aroma) in organic waste‐based media. Letters in Applied Microbiology, 66(2), 153-160.
-
[15] Demirgül, F., Şimşek, Ö., Bozkurt, F., Dertli, E., Sağdıç, O. (2022). Production and characterization of yeast extracts produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Preparative Biochemistry & Biotechnology, 52(6), 657-667.
-
[16] Kıvançlı, J., Elmacı, Y. (2014). Determination the best method for the isolation of volatile compounds of characteristic Turkish coffee flavour. Akademik Gida, 12(3), 6-15.
-
[17] Do, S.H., Lee, T.G., Kim, S.K. (2024). Enhancing protein content in wild-type Saccharomyces cerevisiae via random mutagenesis and optimized fermentation conditions. Journal of Microbiology and Biotechnology, 34(9), 1912.
-
[18] Zhang, Y., Li, S., Meng, Q., Song, H., Wang, X. (2024). Characterization of key odor-active compounds in draft beers for the Chinese market using molecular sensory science approaches. Molecules, 29(11), 2537.
-
[19] Chambers IV, E., Koppel, K. (2013). Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules, 18(5), 4887-4905.
-
[20] Durán-Guerrero, E., Castro, R., García-Moreno, M.d.V., Rodríguez-Dodero, M.d.C., Schwarz, M., Guillén-Sánchez, D. (2021). Aroma of sherry products: A review. Foods, 10(4), 753.
-
[21] Wang, Z., Xiao, Q., Zhuang, J., Feng, T., Ho, C.T., Song, S. (2019). Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques. Journal of Agricultural and Food Chemistry, 68(1), 267-278.
-
[22] Patelski, A.M., Pragłowski, K., Pielech-Przybylska, K., Balcerek, M., Dziekońska-Kubczak, U. (2025). Evaluation of probiotic Saccharomyces boulardii yeast as a distillery strain. Applied Sciences, 15(3), 1392.
-
[23] Alves Z, Melo A, Figueiredo A.R., Coimbra M.A., Gomes A.C., Rocha S.M. (2015). Exploring the Saccharomyces cerevisiae volatile metabolome: Indigenous versus commercial strains. PLoS One, 24, 10(11), e0143641.
-
[24] Lin, M., Liu, X., Xu, Q., Song, H., Li, P., Yao, J. (2014) Aroma‐active components of yeast extract pastes with a basic and characteristic meaty flavour. Journal of the Science of Food and Agriculture, 94(5), 882-889.
-
[25] Huang, Y., Tippmann, J., Becker, T. (2017). A kinetic study on the formation of 2‐and 3‐methylbutanal. Journal of Food Process Engineering, 40(2), e12375.
-
[26] Hazelwood, L.A., Daran, J.-M., van Maris, A.J.A., Pronk, J.T., Dickinson, J.R. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74(8), 2259-2266.
-
[27] Tieman, D., Taylor, M., Schauer, N., Fernie, A.R., Hanson, A.D., Klee, H.J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292.
-
[28] Yu, H., Xie, T., Xie, J., Chen, C., Ai, L., Tian, H. (2020). Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Research International, 129, 108808.
-
[29] Corrêa, G.A., de Castro, B., Rebelo, S.L. (2025). Iron salicylate catalyzes oxidative esterification of biomass-derived aldehydes. Biomass Conversion and Biorefinery, 15, 2903-2914.
-
[30] Birch, A.N., Petersen, M.A., Hansen, Å.S. (2013). The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT-Food Science and Technology, 50(2), 480-488.
-
[31] Saerens, S.M.G., Delvaux, F., Verstrepen, K.J., Van Dijck, P., Thevelein, J.M., Delvaux, F.R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74(2), 454-461.
-
[32] Saerens, S. M. G., Delvaux, F. R., Verstrepen, K. J., Thevelein, J.M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology, 3(2), 165-177.
-
[33] Qu, C., Peng, L., Fei, Y., Liang, J., Bai, W., Liu, G. (2023). Screening ester-producing yeasts to fortify the brewing of rice-flavor Baijiu for enhanced aromas. Bioengineered, 14(1), 2255423.
-
[34] Xia, Y., Liu, Y., Wang, J., Shuang, Q. (2020). Assessment of key aroma compounds in fresh jujube brandy by GC‐O‐MS and odor activity value. Journal of Food Processing and Preservation, 44(7), e14494.
-
[35] Ganzorig, O., Batdorj, B., Satomi, I. (2025). Characterization of volatile compound profile in Mongolian traditional fermented mare's milk, as Airag. Animal Science Journal, 96(1), e70024.
-
[36] Lan, X., Pan, X., Luo, J., Xiao, S., Cai, Y., Wang, J. (2025). Integrative flavoromics-GC-MS/IMS approach to study the formation mechanism of fishy flavor in skipjack tuna oil induced by oxidation and heat. Food Chemistry: X, 102577.
-
[37] Zhang, X., Li, H., Wu, D., Nie, J., Li, X., Guo, Y., Huang, Q. (2024). Unlocking aroma in three types of vinasse fish by sensomics approach. Food Chemistry, 460, 140496.
-
[38] Cai, C., Zhang, M., Chen, H., Chen, W., Chen, W., Zhong, Q. (2022). Enhancement of norisoprenoid and acetoin production for improving the aroma of fermented mango juice by Bacillus subtilis-HNU-B3. Process Biochemistry, 113, 177-184.
-
[39] Romano, P., Suzzi, G. (1993). Acetoin production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 108(1), 23-26.
Şeker Pancarı Melasından Saccharomyces cerevisiae ve Saccharomyces boulardii Kullanılarak Uzatılmış Fermantasyon Süreci İle Elde Edilen Karşılaştırmalı Biyoaroma Profilleri
Year 2025,
Volume: 23 Issue: 3, 184 - 191, 30.09.2025
Furkan Demirgül
,
Nur Çebi
,
Hamza Goktas
,
Ömer Şimşek
,
Osman Sağdıç
Abstract
Lezzet, pek çok tüketicinin gıda tercihlerinin şekillenmesinde rol oynayan önemli bir faktör olup, son yıllarda gıdalarda doğal ve ekolojik olarak sürdürülebilir lezzet bileşiklerinin kullanılmasına yönelik artan bir tüketici talebi bulunmaktadır. Bu doğrultuda gerçekleştirilen bu çalışmada, Saccharomyces cerevisiae TGM10 ve Saccharomyces cerevisiae var. boulardii S11 mayalarının şeker endüstrisinin önemli bir atığı olan şeker pancarı melası ortamında uçucu bileşik üretme yetenekleri araştırılmıştır. Ayrıca, fermantasyon süresinin uçucu bileşik profili üzerindeki etkisi de belirlenmiştir. Erlenmeyer şişelerde 120 saate kadar gerçekleştirilen fermantasyonlarda her iki suş da %10 şeker pancarı melası içeren ortamı iyi bir şekilde tolere etmiştir. Her bir suş tarafından 96 ve 120 saat boyunca fermante edilen örneklerin uçucu bileşik profilleri GC-MS ile belirlenmiştir. S. cerevisiae TGM10 daha yüksek alkollerle baskın bir profil oluştururken, S. boulardii S11 esterlerin baskın olduğu bir profil üretmiştir. Sonuçlar, her iki suşun da şeker pancarı melasının fermantasyonu yoluyla çeşitli hoş ve değerli aroma bileşikleri üretebildiğini göstermiştir. Ayrıca, fermantasyonda kullanılan maya suşunun ve fermantasyon süresinin uçucu bileşik profilleri üzerinde önemli etkileri olduğu tespit edilmiştir. Sonuç olarak, S. cerevisiae TGM10 ve S. boulardii S11’in, düşük maliyetli biyoaroma katkı maddesi üretimi için güçlü bir potansiyel gösterdiği ve fermante gıdalarda başlatıcı veya yardımcı kültür olarak kullanıldıklarında aromayı iyileştirici olarak rol oynayabilecekleri değerlendirilmiştir.
Thanks
Bu çalışma herhangi bir kurumdan herhangi bir hibe almadan gerçekleştirilmiştir. Bize şeker pancarı melası temin ettiği için Adapazarı Şeker Fabrikası A.Ş.'ye teşekkür ederiz. Şekil 1, bir yazar (F.D.) tarafından BioRender.com ile oluşturulmuştur.
References
-
[1] Liem, D.G., Russell, C.G. (2019). The influence of taste liking on the consumption of nutrient rich and nutrient poor foods. Frontiers in Nutrition, 6, 174.
-
[2] Madrera, R.R., Bedriñana, R.P., Valles, B.S. (2015). Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT-Food Science and Technology, 64, 1342-1353.
-
[3] Vandamme, E.J., Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology and Biotechnology, 77, 1323-1332.
-
[4] Mantzouridou, F., Paraskevopoulou, A. (2013). Volatile bio-ester production from orange pulp-containing medium using Saccharomyces cerevisiae. Food and Bioprocess Technology, 6, 3326-3334.
-
[5] Singh, S., Sharma, P.K., Chaturvedi, S., Kumar, P., Nannaware, A.D., Kalra, A., Rout, P.K. (2024). Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chemistry, 435, 137217.
-
[6] Hadj Saadoun, J., Bertani, G., Levante, A., Vezzosi, F., Ricci, A., Bernini, V., Lazzi, C. (2021). Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods, 10(4), 707.
-
[7] European Parliament and the Council (2008). Regulation (EC) No 1334/2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending, Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Retrieved [15.05.2025] from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008R1334
-
[8] U.S. Food and Drug Administration (2020). Code of Federal Regulations, Title 21, Section 101.22: Foods; labeling of spices, flavorings, colorings and chemical preservatives. U.S. Department of Health and Human Services. Retrieved [15.05.2025] from https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-101/section-101.22
-
[9] Karaalioğlu, O., Karagül-Yüceer, Y. (2021). Nonconventional yeasts to produce aroma compounds by using agri-food waste materials. FEMS Yeast Research, 21(8), foab063.
-
[10] Yilmaztekin, M., Cabaroglu, T., Erten, H. (2013). Effects of fermentation temperature and aeration on production of natural isoamyl acetate by Williopsis saturnus var. saturnus. BioMed Research International, 870802.
-
[11] Singh, A., Singh, A. (2022). Microbial degradation and value addition to food and agriculture waste. Current Microbiology, 79, 119.
-
[12] Hernandez‐Orte, P., Bely, M., Cacho, J., Ferreira, V. (2006) Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research, 12, 150-160.
-
[13] Mantzouridou, F.T., Paraskevopoulou, A., Lalou, S. (2015). Yeast flavour production by solid state fermentation of orange peel waste. Biochemical Engineering Journal, 101, 1-8.
-
[14] Chreptowicz, K., Sternicka, M.K., Kowalska, P.D., Mierzejewska, J. (2018). Screening of yeasts for the production of 2‐phenylethanol (rose aroma) in organic waste‐based media. Letters in Applied Microbiology, 66(2), 153-160.
-
[15] Demirgül, F., Şimşek, Ö., Bozkurt, F., Dertli, E., Sağdıç, O. (2022). Production and characterization of yeast extracts produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Preparative Biochemistry & Biotechnology, 52(6), 657-667.
-
[16] Kıvançlı, J., Elmacı, Y. (2014). Determination the best method for the isolation of volatile compounds of characteristic Turkish coffee flavour. Akademik Gida, 12(3), 6-15.
-
[17] Do, S.H., Lee, T.G., Kim, S.K. (2024). Enhancing protein content in wild-type Saccharomyces cerevisiae via random mutagenesis and optimized fermentation conditions. Journal of Microbiology and Biotechnology, 34(9), 1912.
-
[18] Zhang, Y., Li, S., Meng, Q., Song, H., Wang, X. (2024). Characterization of key odor-active compounds in draft beers for the Chinese market using molecular sensory science approaches. Molecules, 29(11), 2537.
-
[19] Chambers IV, E., Koppel, K. (2013). Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules, 18(5), 4887-4905.
-
[20] Durán-Guerrero, E., Castro, R., García-Moreno, M.d.V., Rodríguez-Dodero, M.d.C., Schwarz, M., Guillén-Sánchez, D. (2021). Aroma of sherry products: A review. Foods, 10(4), 753.
-
[21] Wang, Z., Xiao, Q., Zhuang, J., Feng, T., Ho, C.T., Song, S. (2019). Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques. Journal of Agricultural and Food Chemistry, 68(1), 267-278.
-
[22] Patelski, A.M., Pragłowski, K., Pielech-Przybylska, K., Balcerek, M., Dziekońska-Kubczak, U. (2025). Evaluation of probiotic Saccharomyces boulardii yeast as a distillery strain. Applied Sciences, 15(3), 1392.
-
[23] Alves Z, Melo A, Figueiredo A.R., Coimbra M.A., Gomes A.C., Rocha S.M. (2015). Exploring the Saccharomyces cerevisiae volatile metabolome: Indigenous versus commercial strains. PLoS One, 24, 10(11), e0143641.
-
[24] Lin, M., Liu, X., Xu, Q., Song, H., Li, P., Yao, J. (2014) Aroma‐active components of yeast extract pastes with a basic and characteristic meaty flavour. Journal of the Science of Food and Agriculture, 94(5), 882-889.
-
[25] Huang, Y., Tippmann, J., Becker, T. (2017). A kinetic study on the formation of 2‐and 3‐methylbutanal. Journal of Food Process Engineering, 40(2), e12375.
-
[26] Hazelwood, L.A., Daran, J.-M., van Maris, A.J.A., Pronk, J.T., Dickinson, J.R. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74(8), 2259-2266.
-
[27] Tieman, D., Taylor, M., Schauer, N., Fernie, A.R., Hanson, A.D., Klee, H.J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292.
-
[28] Yu, H., Xie, T., Xie, J., Chen, C., Ai, L., Tian, H. (2020). Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Research International, 129, 108808.
-
[29] Corrêa, G.A., de Castro, B., Rebelo, S.L. (2025). Iron salicylate catalyzes oxidative esterification of biomass-derived aldehydes. Biomass Conversion and Biorefinery, 15, 2903-2914.
-
[30] Birch, A.N., Petersen, M.A., Hansen, Å.S. (2013). The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT-Food Science and Technology, 50(2), 480-488.
-
[31] Saerens, S.M.G., Delvaux, F., Verstrepen, K.J., Van Dijck, P., Thevelein, J.M., Delvaux, F.R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74(2), 454-461.
-
[32] Saerens, S. M. G., Delvaux, F. R., Verstrepen, K. J., Thevelein, J.M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial Biotechnology, 3(2), 165-177.
-
[33] Qu, C., Peng, L., Fei, Y., Liang, J., Bai, W., Liu, G. (2023). Screening ester-producing yeasts to fortify the brewing of rice-flavor Baijiu for enhanced aromas. Bioengineered, 14(1), 2255423.
-
[34] Xia, Y., Liu, Y., Wang, J., Shuang, Q. (2020). Assessment of key aroma compounds in fresh jujube brandy by GC‐O‐MS and odor activity value. Journal of Food Processing and Preservation, 44(7), e14494.
-
[35] Ganzorig, O., Batdorj, B., Satomi, I. (2025). Characterization of volatile compound profile in Mongolian traditional fermented mare's milk, as Airag. Animal Science Journal, 96(1), e70024.
-
[36] Lan, X., Pan, X., Luo, J., Xiao, S., Cai, Y., Wang, J. (2025). Integrative flavoromics-GC-MS/IMS approach to study the formation mechanism of fishy flavor in skipjack tuna oil induced by oxidation and heat. Food Chemistry: X, 102577.
-
[37] Zhang, X., Li, H., Wu, D., Nie, J., Li, X., Guo, Y., Huang, Q. (2024). Unlocking aroma in three types of vinasse fish by sensomics approach. Food Chemistry, 460, 140496.
-
[38] Cai, C., Zhang, M., Chen, H., Chen, W., Chen, W., Zhong, Q. (2022). Enhancement of norisoprenoid and acetoin production for improving the aroma of fermented mango juice by Bacillus subtilis-HNU-B3. Process Biochemistry, 113, 177-184.
-
[39] Romano, P., Suzzi, G. (1993). Acetoin production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 108(1), 23-26.