Research Article
BibTex RIS Cite

Antibacterial Effects of Microencapsulated Probiotic and Synbiotics

Year 2019, Volume: 34 Issue: 1, 27 - 36, 30.06.2019

Abstract

The
present study aims to evaluate the inhibition effect of microencapsulated probiotic
culture with prebiotics against two different pathogen enterococci strain. Lactobacillus rhamnosus was used as
probiotic, inulin and fructooligosaccharide (FOS) were used as prebiotics.
Microencapsulation maintained with three different combinations as only
probiotic culture, probiotic culture with inulin and probiotic culture with FOS.
In addition, the effect of inulin and FOS on survival of L. rhamnosus was evaluated. L.
rhamnosus
was microencapsulated by the extrusion technique and its
antibacterial effect on clinical vancomycin-susceptible Enterococcus faecalis (VSEF) and clinical
vancomycin-resistant Enterococcus faecium
(VREF) growth was determined. According to the obtained results,
microencapsulated probiotic culture with prebiotic addition showed inhibition
effect on VREF growth. Furthermore, it was found that the survival rate of the
probiotic culture cells varied according to the prebiotic. It was determined
that inulin was more efficient on L.
rhamnosus
cell viability than FOS.

References

  • Adebola, O. O., Corcoran, O., Morgan, W. A. (2014) Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. J Funct Foods 10: 75–84.
  • Ambalam, P., Kondepudi, K. K., Balusupati, P., Nilsson, I., Wadstrom, T., Ljungh, A. (2015) Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. J Appl Microbiol 119: 1672-1682.
  • Anal, A. K., Singh, H. (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18: 240-251.
  • Anyogu, A., Awamaria, B., Sutherland, J. P., Ouoba, L. I. I. (2014) Molecular characterisation and antimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. Food Control 39: 119-127.
  • Argin, S. (2007) Microencapsulation of probiotic bacteria in xanthan-chitosan polyelectrolyte complex gels. PhD thesis, University of Maryland, College Park, America, 70.
  • Arnold, J. W., Monteagudo-Mera, A., Altermann, E., Cadenas, M. B., Thompson, A. L., Azcarate-Peril, M. A. (2017) Genome sequences of potential probiotic Lactobacillus rhamnosus isolates from human infants. Genome Announcements 5, 14: e00107-17.Arslan-Tontul, S., Erbas, M. (2017)
  • Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Sci Technol 81: 160-169.
  • Aryantini, N. P. D., Yamasaki, E., Kurazono, H., Sujaya, N., Urashima, T., Fukuda, K. (2017) In vitro safety assessments and antimicrobial activities of Lactobacillus rhamnosus strains isolated from a fermented mare's milk. Anim Sci J 88, 3: 517–525.
  • Bağdatlı, A., Kundakcı, A. (2016) Optimization of compositional and structural properties in probiotic sausage production. J Food Sci Technol 53, 3: 1679-1689.
  • Beristain-Bauza, S. C., Mani-López, E., Palou, E., López-Malo, A. (2016) Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 62: 44–51.
  • Bosnea, L. A., Moschakis, T., Biliaderis, C. G. (2014) Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food and Bioprocess Technol 7, 10: 2767–2781.
  • Champagne, C., Fustier, P. (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18: 184–190.
  • Chandramouli, V., Kailasapathya, K., Peiris, P., Jones, M. (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56: 27–35.
  • Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., Villarán, M. D. C. (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142: 185–189.
  • Chen, M. J., Chen, K. N., Kuo, Y. T. (2007) Optimal Thermotolerance of Bifidobacterium bifidum in Gellan–Alginate Microparticles. Biotechnol Bioeng 98, 2: 411-419.
  • Coman, M. M., Verdenelli, M. C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N., Cresci, A. (2014) In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(®), Lactobacillus paracasei IMC 502(®) and SYNBIO(®) against pathogens. J Appl Microbiol 117: 518-527.
  • Donaldson, L. M., McReynolds, J. L., Kim, W. K., Chalova, V. I., Woodward, C. L., Kubena, L. F., Nisbet, D. J., Ricke, S. C. (2008) The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella Enteritidis infection, and intestinal shedding in laying hens. Poult Sci 87: 1253-1262.
  • Doron, S., Hibberd, P.L., Goldin, B., Thorpe, C., McDermott, L., Snydman, D. R. (2015) Effect of Lactobacillus rhamnosus GG administration on vancomycin resistant enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59, 8: 4593-4599.
  • Etchepare, M. D. A., Raddatz, G. C., Flores, E. M. D. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., Grosso, C. R. F., Menezes, C. R. D. (2016) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Sci Technol, 65: 511-517.
  • Fadhil, Z. H., Akın, M. (2016) Fermentation of vegetable juice by probiotic bacteria. Selcuk Univ. J Sci 42, 1: 1-9.
  • Fooks, L. J., Gibson, G. R. (2002) In vitro investigations of the e¡ect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol 39: 67-75.
  • Forestier, C., Champs, C. D., Vatoux, C., Joly, B. (2001) Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol 152: 167–173.
  • Gallaher, D., Khil, J. (1999) The effect of synbiotics on colon carcinogenesis in rats. J Nutr 129 (7): 1483-1487.
  • Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova, G., Stefanova, N., Atanasova, A., Danguleva, A., Ivanova, G., Karapetkov, N., Rumyan, N., Karaivanova, E. (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29, 1: 84-91.
  • Gonzalez-Aguilar, G. A., Ayala-Zavala, J. F., Olivas, G. I., De La Rosa, L. A., Alvarez-Parrilla, E. (2010) Preserving quality of fresh-cut products using safe technologies. J für Verbraucherschutz und Leb 5: 65–72.
  • Gouin, S. (2004) Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci Technol 15: 330–347.
  • Gunenc. A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., Hosseinian, F. (2016) Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Sci Technol 66: 490-495.
  • Jacobsen, C. N., Rosenfeldt-Nielsen, V., Hayford, A. E., Et, A. L. (1999) Screening of probiotic activities of forty-seven stra¬ins of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65: 4949-5956.
  • Jeong, Y. J., Moon, G. S. (2015) Antilisterial bacteriocin from Lactobacillus rhamnosus CJNU 0519 presenting a narrow antimicrobial spectrum. Korean J. Food Sci. An 35, 1: 137-142.
  • Jiang, Q., Stamatova, I., Kari, K., Meurman, J. H. (2014) Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions. Benef Microbes 6, 3: 361-368.
  • Kailasapathy, K. (2002) Microencapsulation of probiotic bacteria: Technology and potential applications. Curr Issues Intest Microbiol 3: 39-48.
  • Kalkan, S. (2016) Analysis of antimicrobial effects of probiotic lactic acid bacteria against Staphylococcus aureus by different mathematical models. Sinop Üniv Fen Bilim Derg 1, 2: 150-159.
  • Karri, S. K., Majeed, M., Natarajan, S., Sivakumar, A., Ali, F., Pande, A., Majeed, S. (2016) Evaluation of anti-diarrhoeal activity of Bacillus coagulans MTCC 5856 and its effect on gastrointestinal motility in wistar rats. Int J Pharma Bio Sci 7, 1: 311-316.
  • Kesenkaş, H., Kınık, Ö., Seçkin, K., Günç Ergönül, P., Akan, E. (2016) Variation of Enterococcus faecium, Bifidobacterium longum and Lactobacillus paracasei ssp. paracasei counts in synbiotic white cheese produced from goat milk. Ege Üniv Ziraat Fak Derg 53, 1: 75-81.
  • Kıran, F., Osmanağaoğlu, Ö. (2012) The use of lactic acid bacteria as probiotic. Selcuk J Agr Food Sci 26, 4: 60-67.
  • Konuray, G., Erginkaya, Z. (2017) Antimicrobial effect of probiotics, prebiotics and synbiotics. Antimicrobial research: Novel bioknowledge and educational programs. A. Méndez-Vilas (Ed.) 213-218, Formatex, Badajoz, Spain.
  • Krasaekoopt, W., Bhandari, B., Deeth, H. (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14: 737-743.
  • Göçer, E. M. Ç., Ergin, F., Arslan, A. A., Küçükçetin, A. (2016) Effect of different incubation temperature and final incubation pH on physicochemical and microbiological properties of probiotic yogurt. Academic Food J 14, 4: 341-350.
  • Li, P., Gu, Q., Zhou, Q. (2016) Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms. J Biotechnol 238: 52-55.
  • Libera, J., Karwowska, M., Stasiak, D. M., Dolatowski, Z. J. (2015) Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. Int J Food Sci Technol 50, 7: 1560-1566.
  • Likotrafiti, E., Tuohy, K. M., Gibson, G. R., Rastall, R. A. (2016) Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains. Int J Food Sci Nutr 67, 2: 83-91.
  • Moemen, D., Tawfeek, D., Badawy, W. (2015) Healthcare-associated vancomycin resistant Enterococcus faecium infections in the Mansoura University Hospitals intensive care units. Egypt. Braz J Microbiol 46, 3: 777-783.
  • Montecinos, F. E. M., Jofre, F. M., Amendola, I., Goncalves, C. R., Leao, M. V. P., Santos, S. S. F. D. (2016). Relationship between the probiotic Lactobacillus rhamnosus and during the biofilm formation. Afr. J. Microbiol. Res 10, 31: 1182-1186.
  • Mpofu, A., Linnemann, A. R., Nout, M. J. R., Zwietering, M. H., Smid, E. J., Besten, H. M. W. D. (2016) Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. Int J Food Microbiol 217: 42–48.
  • Neffe-Skocińska, K., Wójciak, K., Zielińska, D. (2016) Probiotic microorganisms in dry fermented meat products. Probiotics Prebiotics Hum Nutr Heal 14: 279-300.
  • Nikoskelainen, S., Ouwehand, A. C., Bylund, G., Salminen, S., Lilius, E. M. (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immun 15: 443-452.
  • Pimentel, T. C., Madrona, G. S., Garcia, S., Prudencio, S. H. (2015) Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT-Food Sci Technol 63: 415-422.
  • Qi, W. T., Ma, J., Yu, W. T., Xie, Y. B., Wang, W., Ma, X. (2006) Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enzyme Microb Technol 38: 697–704.
  • Rana, S., Bajaj, R., Mann, B. (2018) Characterization of antimicrobial and antioxidative peptides synthesized by L. rhamnosus C6 fermentation of milk. Int J Pept Res Ther 24: 309-321.
  • Raoult, D., Elsawi, Z., Dubourg, G. (2015) Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. Int. J. Antimicrob. Agents 46: 590-593.
  • Reyes, K., Bardossy, A. C., Zervos, M. (2016) Vancomycin-resistant enterococci. Infect Dis Clin 30, 4: 953-965.
  • Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Jahromi, M. F., Ho, Y. W. (2014) Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int 927268.
  • Shori, A. B. (2015) The effect of encapsulating materials on the survival of probiotics during intestinal digestion: a review. Sci Technol Mat 27, 1: 73-77.
  • Silvi, S., Verdenelli, M. C., Cecchini, C., Coman, M. M., Bernabei, M. S., Rosati, J., De Leone, R., Orpianesi, C., Cresci, A. (2014) Probiotic-enriched foods and dietary supplement containing SYNBIO positively affects bowel habits in healthy adults: an assessment using standard statistical analysis and Support Vector Machines. Int J Food Sci Nutr 65, 8: 994-1002.
  • Sim, K. Y., Chye, F. Y., Anton, A. (2012) Probiotic potential and antimicrobial activities of microorganisms isolated from an indigenous fish sauce. Borneo Science 31: 57-63.
  • Siro, I., Kapolna, E., Kapolna, B., Lugasi, A. (2008) Functional food. Product development, marketing and consumer acceptance-A review. Appetite 51: 456-467.
  • Swetwiwathana, A., Visessanguan, W. (2015) Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health. Meat Sci 109: 101-105.
  • Thaker, M. N., Kalan, L., Waglechner, N., Eshaghi, A., Patel, S. N., Poutanen, S., Willey, B., Coburn, B., McGeer, A., Low, D. E., Wright, G. D. (2015) Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother 59, 3: 1405-1410.
  • Tripathi, M. K., Giri, S. K. (2014) Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 9: 225–241.Ünal, E., Erginkaya, Z. (2015) Microencapsulation of probiotic microorganisms. Gıda 35, 4: 297-304.
  • Wang, Y., Lu, Z., Lv, F. (2009) Study on microencapsulation of curcumin pigments by spray drying. Eur Food Res Technol 229: 391-396.
  • Wiegand, I., Hilpert, K., Hancock, R. E. W. (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3, 2: 163-175.Yıldız, S. (2011) The metabolism of fructooligosaccharides and fructooligosaccharide-related compounds in plants. Food Rev Int 27: 16-50.Yılmaz, M. (2004) Prebiyotik ve Probiyotikler. J Curr Pediatr 2: 142-145.

Mikroenkapsüle Probiyotik ve Sinbiyotiklerin Antibakteriyel Etkisi

Year 2019, Volume: 34 Issue: 1, 27 - 36, 30.06.2019

Abstract

Bu çalışmada, prebiyotiklerle birlikte
mikroenkapsüle edilen probiyotik kültürün iki farklı patojen enterokok gelişimi
üzerine inhibe edici etkisi araştırılmıştır. Probiyotik olarak Lactobacillus rhamnosus (L. rhamnosus), prebiyotik olarak inulin ve fruktooligosakkarit (FOS)
kullanılmıştır. Mikroenkapsülasyon, sadece probiyotik kültür, probiyotik kültür
ile inülin, probiyotik kültür ile FOS olmak üzere 3 farklı kombinasyonda
gerçekleştirilmiştir.  Ayrıca, FOS ve
inülinin L. rhamnosus canlılığı
üzerine etkisi belirlenmiştir. L.
rhamnosus
ekstrüzyon tekniği ile mikroenkapsüle edilmiş ve
vankomisin-duyarlı Enterococcus faecalis
(VSEF) ile vankomisin-dirençli Enterococcus
faecium
(VREF) üzerine antibakteriyel etkisi araştırılmıştır. Elde edilen
sonuçlara göre, prebiyotik ilavesi ile mikroenkapsüle edilen probiyotik kültür
VREF üzerine inhibe edici etki göstermiştir. Probiyotik hücrelerin canlılığının
prebiyotik çeşidinden etkilendiği gözlenmiştir. L. rhamnosus canlılığı üzerinde inülinin FOS’a göre daha etkili
olduğu tespit edilmiştir.

References

  • Adebola, O. O., Corcoran, O., Morgan, W. A. (2014) Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. J Funct Foods 10: 75–84.
  • Ambalam, P., Kondepudi, K. K., Balusupati, P., Nilsson, I., Wadstrom, T., Ljungh, A. (2015) Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. J Appl Microbiol 119: 1672-1682.
  • Anal, A. K., Singh, H. (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18: 240-251.
  • Anyogu, A., Awamaria, B., Sutherland, J. P., Ouoba, L. I. I. (2014) Molecular characterisation and antimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. Food Control 39: 119-127.
  • Argin, S. (2007) Microencapsulation of probiotic bacteria in xanthan-chitosan polyelectrolyte complex gels. PhD thesis, University of Maryland, College Park, America, 70.
  • Arnold, J. W., Monteagudo-Mera, A., Altermann, E., Cadenas, M. B., Thompson, A. L., Azcarate-Peril, M. A. (2017) Genome sequences of potential probiotic Lactobacillus rhamnosus isolates from human infants. Genome Announcements 5, 14: e00107-17.Arslan-Tontul, S., Erbas, M. (2017)
  • Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Sci Technol 81: 160-169.
  • Aryantini, N. P. D., Yamasaki, E., Kurazono, H., Sujaya, N., Urashima, T., Fukuda, K. (2017) In vitro safety assessments and antimicrobial activities of Lactobacillus rhamnosus strains isolated from a fermented mare's milk. Anim Sci J 88, 3: 517–525.
  • Bağdatlı, A., Kundakcı, A. (2016) Optimization of compositional and structural properties in probiotic sausage production. J Food Sci Technol 53, 3: 1679-1689.
  • Beristain-Bauza, S. C., Mani-López, E., Palou, E., López-Malo, A. (2016) Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 62: 44–51.
  • Bosnea, L. A., Moschakis, T., Biliaderis, C. G. (2014) Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food and Bioprocess Technol 7, 10: 2767–2781.
  • Champagne, C., Fustier, P. (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18: 184–190.
  • Chandramouli, V., Kailasapathya, K., Peiris, P., Jones, M. (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56: 27–35.
  • Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., Villarán, M. D. C. (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142: 185–189.
  • Chen, M. J., Chen, K. N., Kuo, Y. T. (2007) Optimal Thermotolerance of Bifidobacterium bifidum in Gellan–Alginate Microparticles. Biotechnol Bioeng 98, 2: 411-419.
  • Coman, M. M., Verdenelli, M. C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N., Cresci, A. (2014) In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(®), Lactobacillus paracasei IMC 502(®) and SYNBIO(®) against pathogens. J Appl Microbiol 117: 518-527.
  • Donaldson, L. M., McReynolds, J. L., Kim, W. K., Chalova, V. I., Woodward, C. L., Kubena, L. F., Nisbet, D. J., Ricke, S. C. (2008) The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella Enteritidis infection, and intestinal shedding in laying hens. Poult Sci 87: 1253-1262.
  • Doron, S., Hibberd, P.L., Goldin, B., Thorpe, C., McDermott, L., Snydman, D. R. (2015) Effect of Lactobacillus rhamnosus GG administration on vancomycin resistant enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59, 8: 4593-4599.
  • Etchepare, M. D. A., Raddatz, G. C., Flores, E. M. D. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., Grosso, C. R. F., Menezes, C. R. D. (2016) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Sci Technol, 65: 511-517.
  • Fadhil, Z. H., Akın, M. (2016) Fermentation of vegetable juice by probiotic bacteria. Selcuk Univ. J Sci 42, 1: 1-9.
  • Fooks, L. J., Gibson, G. R. (2002) In vitro investigations of the e¡ect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol 39: 67-75.
  • Forestier, C., Champs, C. D., Vatoux, C., Joly, B. (2001) Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol 152: 167–173.
  • Gallaher, D., Khil, J. (1999) The effect of synbiotics on colon carcinogenesis in rats. J Nutr 129 (7): 1483-1487.
  • Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova, G., Stefanova, N., Atanasova, A., Danguleva, A., Ivanova, G., Karapetkov, N., Rumyan, N., Karaivanova, E. (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29, 1: 84-91.
  • Gonzalez-Aguilar, G. A., Ayala-Zavala, J. F., Olivas, G. I., De La Rosa, L. A., Alvarez-Parrilla, E. (2010) Preserving quality of fresh-cut products using safe technologies. J für Verbraucherschutz und Leb 5: 65–72.
  • Gouin, S. (2004) Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci Technol 15: 330–347.
  • Gunenc. A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., Hosseinian, F. (2016) Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Sci Technol 66: 490-495.
  • Jacobsen, C. N., Rosenfeldt-Nielsen, V., Hayford, A. E., Et, A. L. (1999) Screening of probiotic activities of forty-seven stra¬ins of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65: 4949-5956.
  • Jeong, Y. J., Moon, G. S. (2015) Antilisterial bacteriocin from Lactobacillus rhamnosus CJNU 0519 presenting a narrow antimicrobial spectrum. Korean J. Food Sci. An 35, 1: 137-142.
  • Jiang, Q., Stamatova, I., Kari, K., Meurman, J. H. (2014) Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions. Benef Microbes 6, 3: 361-368.
  • Kailasapathy, K. (2002) Microencapsulation of probiotic bacteria: Technology and potential applications. Curr Issues Intest Microbiol 3: 39-48.
  • Kalkan, S. (2016) Analysis of antimicrobial effects of probiotic lactic acid bacteria against Staphylococcus aureus by different mathematical models. Sinop Üniv Fen Bilim Derg 1, 2: 150-159.
  • Karri, S. K., Majeed, M., Natarajan, S., Sivakumar, A., Ali, F., Pande, A., Majeed, S. (2016) Evaluation of anti-diarrhoeal activity of Bacillus coagulans MTCC 5856 and its effect on gastrointestinal motility in wistar rats. Int J Pharma Bio Sci 7, 1: 311-316.
  • Kesenkaş, H., Kınık, Ö., Seçkin, K., Günç Ergönül, P., Akan, E. (2016) Variation of Enterococcus faecium, Bifidobacterium longum and Lactobacillus paracasei ssp. paracasei counts in synbiotic white cheese produced from goat milk. Ege Üniv Ziraat Fak Derg 53, 1: 75-81.
  • Kıran, F., Osmanağaoğlu, Ö. (2012) The use of lactic acid bacteria as probiotic. Selcuk J Agr Food Sci 26, 4: 60-67.
  • Konuray, G., Erginkaya, Z. (2017) Antimicrobial effect of probiotics, prebiotics and synbiotics. Antimicrobial research: Novel bioknowledge and educational programs. A. Méndez-Vilas (Ed.) 213-218, Formatex, Badajoz, Spain.
  • Krasaekoopt, W., Bhandari, B., Deeth, H. (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14: 737-743.
  • Göçer, E. M. Ç., Ergin, F., Arslan, A. A., Küçükçetin, A. (2016) Effect of different incubation temperature and final incubation pH on physicochemical and microbiological properties of probiotic yogurt. Academic Food J 14, 4: 341-350.
  • Li, P., Gu, Q., Zhou, Q. (2016) Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms. J Biotechnol 238: 52-55.
  • Libera, J., Karwowska, M., Stasiak, D. M., Dolatowski, Z. J. (2015) Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. Int J Food Sci Technol 50, 7: 1560-1566.
  • Likotrafiti, E., Tuohy, K. M., Gibson, G. R., Rastall, R. A. (2016) Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains. Int J Food Sci Nutr 67, 2: 83-91.
  • Moemen, D., Tawfeek, D., Badawy, W. (2015) Healthcare-associated vancomycin resistant Enterococcus faecium infections in the Mansoura University Hospitals intensive care units. Egypt. Braz J Microbiol 46, 3: 777-783.
  • Montecinos, F. E. M., Jofre, F. M., Amendola, I., Goncalves, C. R., Leao, M. V. P., Santos, S. S. F. D. (2016). Relationship between the probiotic Lactobacillus rhamnosus and during the biofilm formation. Afr. J. Microbiol. Res 10, 31: 1182-1186.
  • Mpofu, A., Linnemann, A. R., Nout, M. J. R., Zwietering, M. H., Smid, E. J., Besten, H. M. W. D. (2016) Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. Int J Food Microbiol 217: 42–48.
  • Neffe-Skocińska, K., Wójciak, K., Zielińska, D. (2016) Probiotic microorganisms in dry fermented meat products. Probiotics Prebiotics Hum Nutr Heal 14: 279-300.
  • Nikoskelainen, S., Ouwehand, A. C., Bylund, G., Salminen, S., Lilius, E. M. (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immun 15: 443-452.
  • Pimentel, T. C., Madrona, G. S., Garcia, S., Prudencio, S. H. (2015) Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT-Food Sci Technol 63: 415-422.
  • Qi, W. T., Ma, J., Yu, W. T., Xie, Y. B., Wang, W., Ma, X. (2006) Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enzyme Microb Technol 38: 697–704.
  • Rana, S., Bajaj, R., Mann, B. (2018) Characterization of antimicrobial and antioxidative peptides synthesized by L. rhamnosus C6 fermentation of milk. Int J Pept Res Ther 24: 309-321.
  • Raoult, D., Elsawi, Z., Dubourg, G. (2015) Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. Int. J. Antimicrob. Agents 46: 590-593.
  • Reyes, K., Bardossy, A. C., Zervos, M. (2016) Vancomycin-resistant enterococci. Infect Dis Clin 30, 4: 953-965.
  • Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Jahromi, M. F., Ho, Y. W. (2014) Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed Res Int 927268.
  • Shori, A. B. (2015) The effect of encapsulating materials on the survival of probiotics during intestinal digestion: a review. Sci Technol Mat 27, 1: 73-77.
  • Silvi, S., Verdenelli, M. C., Cecchini, C., Coman, M. M., Bernabei, M. S., Rosati, J., De Leone, R., Orpianesi, C., Cresci, A. (2014) Probiotic-enriched foods and dietary supplement containing SYNBIO positively affects bowel habits in healthy adults: an assessment using standard statistical analysis and Support Vector Machines. Int J Food Sci Nutr 65, 8: 994-1002.
  • Sim, K. Y., Chye, F. Y., Anton, A. (2012) Probiotic potential and antimicrobial activities of microorganisms isolated from an indigenous fish sauce. Borneo Science 31: 57-63.
  • Siro, I., Kapolna, E., Kapolna, B., Lugasi, A. (2008) Functional food. Product development, marketing and consumer acceptance-A review. Appetite 51: 456-467.
  • Swetwiwathana, A., Visessanguan, W. (2015) Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health. Meat Sci 109: 101-105.
  • Thaker, M. N., Kalan, L., Waglechner, N., Eshaghi, A., Patel, S. N., Poutanen, S., Willey, B., Coburn, B., McGeer, A., Low, D. E., Wright, G. D. (2015) Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother 59, 3: 1405-1410.
  • Tripathi, M. K., Giri, S. K. (2014) Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 9: 225–241.Ünal, E., Erginkaya, Z. (2015) Microencapsulation of probiotic microorganisms. Gıda 35, 4: 297-304.
  • Wang, Y., Lu, Z., Lv, F. (2009) Study on microencapsulation of curcumin pigments by spray drying. Eur Food Res Technol 229: 391-396.
  • Wiegand, I., Hilpert, K., Hancock, R. E. W. (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3, 2: 163-175.Yıldız, S. (2011) The metabolism of fructooligosaccharides and fructooligosaccharide-related compounds in plants. Food Rev Int 27: 16-50.Yılmaz, M. (2004) Prebiyotik ve Probiyotikler. J Curr Pediatr 2: 142-145.
There are 61 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Zerrin Erginkaya 0000-0001-6208-2927

Gözde Konuray 0000-0002-6817-3114

Melek Harmancı

Gözde Kesen This is me

Nagihan Mete This is me

Publication Date June 30, 2019
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Erginkaya, Z., Konuray, G., Harmancı, M., Kesen, G., et al. (2019). Antibacterial Effects of Microencapsulated Probiotic and Synbiotics. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 34(1), 27-36.
AMA Erginkaya Z, Konuray G, Harmancı M, Kesen G, Mete N. Antibacterial Effects of Microencapsulated Probiotic and Synbiotics. Çukurova J. Agric. Food. Sciences. June 2019;34(1):27-36.
Chicago Erginkaya, Zerrin, Gözde Konuray, Melek Harmancı, Gözde Kesen, and Nagihan Mete. “Antibacterial Effects of Microencapsulated Probiotic and Synbiotics”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 34, no. 1 (June 2019): 27-36.
EndNote Erginkaya Z, Konuray G, Harmancı M, Kesen G, Mete N (June 1, 2019) Antibacterial Effects of Microencapsulated Probiotic and Synbiotics. Çukurova Tarım ve Gıda Bilimleri Dergisi 34 1 27–36.
IEEE Z. Erginkaya, G. Konuray, M. Harmancı, G. Kesen, and N. Mete, “Antibacterial Effects of Microencapsulated Probiotic and Synbiotics”, Çukurova J. Agric. Food. Sciences, vol. 34, no. 1, pp. 27–36, 2019.
ISNAD Erginkaya, Zerrin et al. “Antibacterial Effects of Microencapsulated Probiotic and Synbiotics”. Çukurova Tarım ve Gıda Bilimleri Dergisi 34/1 (June 2019), 27-36.
JAMA Erginkaya Z, Konuray G, Harmancı M, Kesen G, Mete N. Antibacterial Effects of Microencapsulated Probiotic and Synbiotics. Çukurova J. Agric. Food. Sciences. 2019;34:27–36.
MLA Erginkaya, Zerrin et al. “Antibacterial Effects of Microencapsulated Probiotic and Synbiotics”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 34, no. 1, 2019, pp. 27-36.
Vancouver Erginkaya Z, Konuray G, Harmancı M, Kesen G, Mete N. Antibacterial Effects of Microencapsulated Probiotic and Synbiotics. Çukurova J. Agric. Food. Sciences. 2019;34(1):27-36.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.