Review
BibTex RIS Cite

Diyet İndüklü Obeziteyi Modellemek için Güvenilir Bir Yöntem: Kafeterya Diyeti

Year 2023, Volume: 2 Issue: 3, 28 - 36, 30.09.2023
https://doi.org/10.59518/farabimedj.1210558

Abstract

Obezite, hem gelişmiş hem de gelişmekte olan ülkelerde tüm yaş gruplarında görülen, birçok hastalığa neden olan oldukça yaygın metabolik bir hastalıktır. İnsan fizyolojisine ve metabolik özelliklerine benzerlik gösteren kemirgenlerde obezite gibi hastalıklar çeşitli diyetler kullanılarak taklit edilebilmektedir. Diyet indüklü obezite (DİO) modelleri, obezite gibi metabolik hastalıkların araştırılmasında oldukça önemlidir. Buna rağmen hangi DİO modelinin insanlardaki obezite patolojisini en iyi şekilde yansıttığı hala tartışma konusudur. Deney hayvanlarında kullanılan kafeterya diyeti (KD) modeli, batı toplumlarında sıklıkla tüketilen sağlıksız besinlerin bir araya getirilmesiyle oluşturulur. KD modeli, insanlardaki yeme alışkanlıklarını diğer modellere göre daha iyi yansıtır. Bu derlemede, diyet indüklü obezite modelleri arasında obeziteyi diğer modellere göre daha iyi yansıtan KD değerlendirilmiştir.

References

  • World Health Organization. Obesity and overweight Fact sheet. http://www.who.int/mediacentre/factsheets/fs311/en/#. Basım Tarihi: 9 Temmuz 2021. Erişim Tarihi: 1 Ağustos 2021.
  • Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019; 92: 6-10. DOI: 10.1016/j.metabol.2018.09.005.
  • Türkiye Endokrinoloji ve Metabolizma Derneği. Obezite tanı ve tedavi klavuzu. 2019; 8.
  • Leigh SJ, Lee F, Morris MJ. Hyperpalatability and the Generation of Obesity: Roles of Environment, Stress Exposure and Individual Difference. Curr Obes Rep. 2018; 7(1): 6-18. DOI: 10.1007/s13679-018-0292-0.
  • Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS One. 2017; 12(5): e0177175. DOI: 10.1371/journal.pone.0177175.
  • Kleinert M, Clemmensen C, Hofmann SM, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018; 14(3): 140-162. DOI: 10.1038/nrendo.2017.161.
  • Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017; 92(2): 251-265. DOI: 10.1016/j.mayocp.2016.09.017.
  • Kaya M, Çevik A. Hayvan deneylerinde planlanma ve model seçimi. Deneysel Tıp Araştırma Enstitüsü Dergisi. 2011; 1(2): 36-39.
  • Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15(4):798-808. DOI: 10.1038/oby.2007.608.
  • Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020; 69(3): 326-335. DOI: 10.1538/expanim.19-0148.
  • Doulberis M, Papaefthymiou A, Polyzos SA, et al. Rodent models of obesity. Minerva Endocrinol. 2020; 45(3): 243-263. DOI: 10.23736/S0391-1977.19.03058-X.
  • Bortolin RC, Vargas AR, Gasparotto J, et al. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (Lond). 2018; 42(3): 525-534. DOI: 10.1038/ijo.2017.22.
  • Boggiano MM, Artiga AI, Pritchett CE, Chandler-Laney PC, Smith ML, Eldridge AJ. High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obes (Lond). 2007; 31(9): 1357-1367. DOI: 10.1038/sj.ijo.0803614.
  • Nilsson C, Raun K, Yan FF, Larsen MO, Tang-Christensen M. Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin. 2012; 33(2): 173-181. DOI: 10.1038/aps.2011.203.
  • Lang P, Hasselwander S, Li H, Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci Rep. 2019; 9(1): 19556. DOI: 10.1038/s41598-019-55987-x.
  • Preguiça I, Alves A, Nunes S, et al. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev. 2020; 21(12): e13081. DOI: 10.1111/obr.13081.
  • Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O'Sullivan JF. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms-A Narrative Review. Nutrients. 2020; 12(5): 1505. DOI:10.3390/nu12051505.
  • Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010; 23(2): 270-299. DOI: 10.1017/S0954422410000168.
  • Pinheiro-Castro N, Silva LBAR, Novaes GM, Ong TP. Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models. Adv Exp Med Biol. 2019; 1134: 149-161. DOI: 10.1007/978-3-030-12668-1_8.
  • Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev. 2021; 122: 92-119. DOI: 10.1016/j.neubiorev.2020.11.003.
  • Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice?. Nutr Diabetes. 2020; 10(1): 24. DOI: 10.1038/s41387-020-0127-4.
  • Barnard DE, Lewis SM, Teter BB, Thigpen JE. Open- and closed-formula laboratory animal diets and their importance to research. J Am Assoc Lab Anim Sci. 2009;48(6):709-713.
  • Small L, Brandon AE, Turner N, Cooney GJ. Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed?. Am J Physiol Endocrinol Metab. 2018; 314(3): E251-E265. DOI: 10.1152/ajpendo.00337.2017.
  • Lewis AR, Singh S, Youssef FF. Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon. 2019; 5(3): e01412. DOI: 10.1016/j.heliyon.2019.e01412.
  • Gomez-Smith M, Karthikeyan S, Jeffers MS, et al. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiol Behav. 2016; 167: 382-391. DOI: 10.1016/j.physbeh.2016.09.029.
  • Gac L, Kanaly V, Ramirez V, Teske JA, Pinto MP, Perez-Leighton CE. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding. Physiol Behav. 2015; 152(Pt A): 315-322. DOI: 10.1016/j.physbeh.2015.10.001.
  • Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Terra X, Blay M. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats. Br J Nutr. 2017; 117(2): 218-229. DOI: 10.1017/S0007114516004608.
  • Gibert-Ramos A, Martín-González MZ, Crescenti A, Salvadó MJ. A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients. 2020; 12(11): 3251. DOI: 10.3390/nu12113251.
  • Subias-Gusils A, Boqué N, Caimari A, et al. A restricted cafeteria diet ameliorates biometric and metabolic profile in a rat diet-induced obesity model. Int J Food Sci Nutr. 2021; 72(6): 767-780. DOI: 10.1080/09637486.2020.1870037.
  • El Ayadi A, Tapking C, Prasai A, et al. Cafeteria Diet ımpacts the body weight and energy expenditure of brown norway rats in an apparent age dependent manner, but has no effect on muscle anabolic sensitivity to nutrition. Front Nutr. 2021; 8: 719612. DOI: 10.3389/fnut.2021.719612.
  • Dos Reis Costa DEF, de Araújo NF, Nóbrega NRC, et al. Contribution of RAS, ROS and COX-1-derived prostanoids to the contractile profile of perivascular adipose tissue in cafeteria diet-induced obesity. Life Sci. 2022; 309: 120994. DOI: 10.1016/j.lfs.2022.120994.
  • Abd Elwahab AH, Ramadan BK, Schaalan MF, Tolba AM. A novel role of SIRT1/ FGF-21 in Taurine protection against Cafeteria Diet-ınduced steatohepatitis in rats. Cell Physiol Biochem. 2017; 43(2): 644-659. DOI: 10.1159/000480649.
  • Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009; 150(5): 2109-2117. DOI: 10.1210/en.2008-0971.
  • Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016; 152: 244-248. DOI: 10.1016/j.lfs.2015.10.025.
  • Zeeni N, Dagher-Hamalian C, Dimassi H, Faour WH. Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm Res. 2015; 64(7): 501-512. DOI: 10.1007/s00011-015-0831-z.
  • Higa TS, Spinola AV, Fonseca-Alaniz MH, Evangelista FS. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol. 2014; 6(1): 47-54.
  • Sampey BP, Vanhoose AM, Winfield HM, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011; 19(6): 1109-1117. DOI: 10.1038/oby.2011.18.
  • Castell-Auví A, Cedó L, Pallarès V, Blay M, Ardévol A, Pinent M. The effects of a cafeteria diet on insulin production and clearance in rats. Br J Nutr. 2012; 108(7): 1155-1162. DOI: 10.1017/S0007114511006623.
  • Zeeni N, Daher C, Fromentin G, Tome D, Darcel N, Chaumontet C. A cafeteria diet modifies the response to chronic variable stress in rats. Stress. 2013; 16(2): 211-219. DOI: 10.3109/10253890.2012.708952.
  • Johnson AR, Wilkerson MD, Sampey BP, Troester MA, Hayes DN, Makowski L. Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun. 2016; 473(2): 545-550. DOI: 10.1016/j.bbrc.2016.03.113.

New Trend in Diet Induced Obesity Models: Cafeteria Diet

Year 2023, Volume: 2 Issue: 3, 28 - 36, 30.09.2023
https://doi.org/10.59518/farabimedj.1210558

Abstract

Obesity is a very common metabolic disease that is seen in all age groups in both developed and developing countries and causes many diseases. Diseases such as obesity in rodents, which are similar to human physiology and metabolic characteristics, can be mimicked by using various diets. Diet-induced obesity (DIO) models are very important in the investigation of metabolic diseases such as obesity. However, it is still a matter of debate which DIO model best reflects the pathology of obesity in humans. The cafeteria (CAF) diet model used in experimental animals is created by combining unhealthy foods that are frequently consumed in Western societies. It is formed by combining a wide variety of foods with high energy value and delicious, such as The CAF diet model better reflects human eating habits than other models. In this review, the CAF diet, which reflects obesity better than other models, was evaluated among diet-induced obesity models.

References

  • World Health Organization. Obesity and overweight Fact sheet. http://www.who.int/mediacentre/factsheets/fs311/en/#. Basım Tarihi: 9 Temmuz 2021. Erişim Tarihi: 1 Ağustos 2021.
  • Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019; 92: 6-10. DOI: 10.1016/j.metabol.2018.09.005.
  • Türkiye Endokrinoloji ve Metabolizma Derneği. Obezite tanı ve tedavi klavuzu. 2019; 8.
  • Leigh SJ, Lee F, Morris MJ. Hyperpalatability and the Generation of Obesity: Roles of Environment, Stress Exposure and Individual Difference. Curr Obes Rep. 2018; 7(1): 6-18. DOI: 10.1007/s13679-018-0292-0.
  • Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS One. 2017; 12(5): e0177175. DOI: 10.1371/journal.pone.0177175.
  • Kleinert M, Clemmensen C, Hofmann SM, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018; 14(3): 140-162. DOI: 10.1038/nrendo.2017.161.
  • Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017; 92(2): 251-265. DOI: 10.1016/j.mayocp.2016.09.017.
  • Kaya M, Çevik A. Hayvan deneylerinde planlanma ve model seçimi. Deneysel Tıp Araştırma Enstitüsü Dergisi. 2011; 1(2): 36-39.
  • Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15(4):798-808. DOI: 10.1038/oby.2007.608.
  • Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020; 69(3): 326-335. DOI: 10.1538/expanim.19-0148.
  • Doulberis M, Papaefthymiou A, Polyzos SA, et al. Rodent models of obesity. Minerva Endocrinol. 2020; 45(3): 243-263. DOI: 10.23736/S0391-1977.19.03058-X.
  • Bortolin RC, Vargas AR, Gasparotto J, et al. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (Lond). 2018; 42(3): 525-534. DOI: 10.1038/ijo.2017.22.
  • Boggiano MM, Artiga AI, Pritchett CE, Chandler-Laney PC, Smith ML, Eldridge AJ. High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obes (Lond). 2007; 31(9): 1357-1367. DOI: 10.1038/sj.ijo.0803614.
  • Nilsson C, Raun K, Yan FF, Larsen MO, Tang-Christensen M. Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin. 2012; 33(2): 173-181. DOI: 10.1038/aps.2011.203.
  • Lang P, Hasselwander S, Li H, Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci Rep. 2019; 9(1): 19556. DOI: 10.1038/s41598-019-55987-x.
  • Preguiça I, Alves A, Nunes S, et al. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev. 2020; 21(12): e13081. DOI: 10.1111/obr.13081.
  • Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O'Sullivan JF. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms-A Narrative Review. Nutrients. 2020; 12(5): 1505. DOI:10.3390/nu12051505.
  • Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010; 23(2): 270-299. DOI: 10.1017/S0954422410000168.
  • Pinheiro-Castro N, Silva LBAR, Novaes GM, Ong TP. Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models. Adv Exp Med Biol. 2019; 1134: 149-161. DOI: 10.1007/978-3-030-12668-1_8.
  • Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev. 2021; 122: 92-119. DOI: 10.1016/j.neubiorev.2020.11.003.
  • Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice?. Nutr Diabetes. 2020; 10(1): 24. DOI: 10.1038/s41387-020-0127-4.
  • Barnard DE, Lewis SM, Teter BB, Thigpen JE. Open- and closed-formula laboratory animal diets and their importance to research. J Am Assoc Lab Anim Sci. 2009;48(6):709-713.
  • Small L, Brandon AE, Turner N, Cooney GJ. Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed?. Am J Physiol Endocrinol Metab. 2018; 314(3): E251-E265. DOI: 10.1152/ajpendo.00337.2017.
  • Lewis AR, Singh S, Youssef FF. Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon. 2019; 5(3): e01412. DOI: 10.1016/j.heliyon.2019.e01412.
  • Gomez-Smith M, Karthikeyan S, Jeffers MS, et al. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiol Behav. 2016; 167: 382-391. DOI: 10.1016/j.physbeh.2016.09.029.
  • Gac L, Kanaly V, Ramirez V, Teske JA, Pinto MP, Perez-Leighton CE. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding. Physiol Behav. 2015; 152(Pt A): 315-322. DOI: 10.1016/j.physbeh.2015.10.001.
  • Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Terra X, Blay M. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats. Br J Nutr. 2017; 117(2): 218-229. DOI: 10.1017/S0007114516004608.
  • Gibert-Ramos A, Martín-González MZ, Crescenti A, Salvadó MJ. A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients. 2020; 12(11): 3251. DOI: 10.3390/nu12113251.
  • Subias-Gusils A, Boqué N, Caimari A, et al. A restricted cafeteria diet ameliorates biometric and metabolic profile in a rat diet-induced obesity model. Int J Food Sci Nutr. 2021; 72(6): 767-780. DOI: 10.1080/09637486.2020.1870037.
  • El Ayadi A, Tapking C, Prasai A, et al. Cafeteria Diet ımpacts the body weight and energy expenditure of brown norway rats in an apparent age dependent manner, but has no effect on muscle anabolic sensitivity to nutrition. Front Nutr. 2021; 8: 719612. DOI: 10.3389/fnut.2021.719612.
  • Dos Reis Costa DEF, de Araújo NF, Nóbrega NRC, et al. Contribution of RAS, ROS and COX-1-derived prostanoids to the contractile profile of perivascular adipose tissue in cafeteria diet-induced obesity. Life Sci. 2022; 309: 120994. DOI: 10.1016/j.lfs.2022.120994.
  • Abd Elwahab AH, Ramadan BK, Schaalan MF, Tolba AM. A novel role of SIRT1/ FGF-21 in Taurine protection against Cafeteria Diet-ınduced steatohepatitis in rats. Cell Physiol Biochem. 2017; 43(2): 644-659. DOI: 10.1159/000480649.
  • Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology. 2009; 150(5): 2109-2117. DOI: 10.1210/en.2008-0971.
  • Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016; 152: 244-248. DOI: 10.1016/j.lfs.2015.10.025.
  • Zeeni N, Dagher-Hamalian C, Dimassi H, Faour WH. Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm Res. 2015; 64(7): 501-512. DOI: 10.1007/s00011-015-0831-z.
  • Higa TS, Spinola AV, Fonseca-Alaniz MH, Evangelista FS. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol. 2014; 6(1): 47-54.
  • Sampey BP, Vanhoose AM, Winfield HM, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011; 19(6): 1109-1117. DOI: 10.1038/oby.2011.18.
  • Castell-Auví A, Cedó L, Pallarès V, Blay M, Ardévol A, Pinent M. The effects of a cafeteria diet on insulin production and clearance in rats. Br J Nutr. 2012; 108(7): 1155-1162. DOI: 10.1017/S0007114511006623.
  • Zeeni N, Daher C, Fromentin G, Tome D, Darcel N, Chaumontet C. A cafeteria diet modifies the response to chronic variable stress in rats. Stress. 2013; 16(2): 211-219. DOI: 10.3109/10253890.2012.708952.
  • Johnson AR, Wilkerson MD, Sampey BP, Troester MA, Hayes DN, Makowski L. Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun. 2016; 473(2): 545-550. DOI: 10.1016/j.bbrc.2016.03.113.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Medical Biochemistry - Carbohydrates, Health Care Administration
Journal Section Reviews
Authors

Ebru Yazıcı 0000-0003-3340-8371

Early Pub Date August 12, 2023
Publication Date September 30, 2023
Submission Date November 26, 2022
Published in Issue Year 2023 Volume: 2 Issue: 3

Cite

AMA Yazıcı E. Diyet İndüklü Obeziteyi Modellemek için Güvenilir Bir Yöntem: Kafeterya Diyeti. Farabi Med J. September 2023;2(3):28-36. doi:10.59518/farabimedj.1210558

*The articles to be sent to the journal should be prepared according to the sample files given below. Manuscripts not prepared in accordance with the journal format will be returned to the Author(s).

1. ORIGİNAL ARTİCLE TEMPLATE/ÖZGÜN MAKALE ŞABLONU

2. CASE REPORT TEMPLATE/OLGU SUNUMU ŞABLONU

3. REVİEW TEMPLATE /DERLEME ŞABLONU

4. TITLE PAGE/BAŞLIK SAYFASI

5. COPYRİGHT TRANSFER FORM/TELİF HAKKI DEVİR FORMU

6. COVER LETTER/KAPAK YAZISI

**International Medical Journals Editorial Board (ICMJE) directive