BibTex RIS Cite

KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ

Year 2016, Volume: 41 Issue: 4, 197 - 204, 01.08.2016

Abstract

-

References

  • FAO. Gıda ve Tarım Örgütü, Domates üretim istatistikleri http://www.fao.org/statistics/en/ (Eriflim 17 Temmuz 2015).
  • Ulusal Gıda Kompozisyonları Veri Tabanı http://http://www.turkomp.gov.tr/ (Eriflim 17 Kasım 2015).
  • Ertekin C, Yaldiz O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63, 349-359.
  • Guo X, Xia C, Tan Y, Chen I, Ming J. 2014. Mathematical modeling and effect of various hot-air drying on mushroom (Lentinus edodes). J Integr Agric, 13, 207-216.
  • Esfahani JA, Majdi H, Barati E. 2014. Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: Apple slices. J Food Eng, 123, 87-93.
  • Orikasa T, Koide S, Okamoto S, Imaizumi T, Muramatsu Y, Takeda J, Shiina T, Tagawa A. 2014. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. J Food Eng, 125, 51-58.
  • Schubert H, Regier M. 2005. The Microwave Processing of Foods. Woodhead Cambridge, UK. 8. Wang, J. and Xi, Y.S. 2005. Drying ckaracteristics and drying quality of carrot using a two-stage microwave process. J Food Eng, 68, 505-511.
  • Torringa E, Esveld E, Scheewe I, van den Berg R, Bartels P. 2001. Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. J Food Eng, 49, 185-191.
  • Esehaghbeygi AA, Pirnazari K, Sadeghi M. 2014. Quality assessment of electrohydrodynamic & microwave dehydrated banana slices. Food Sci Technol, 55, 565-571.
  • Dak M, Pareek NK. 2014. Effective moisture diffusivity of pomegranate arils undergoing microwave-vacuum drying. J Food Eng, 122, 117-121. 12. Zarein M, Samadi SH, Ghobadian B. 2015. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J Saudi Society Agric Sci, 14(1), 41-47.
  • Hunterlab. 2008. Hunter Versus CIE 1976 L*, a*, b*. Applications Note. 13(2), 4 pp.
  • Wang Z, Sun J, Chen F, Liao X, Hu X. 2007. Mathematical modeling on thin layer microwave drying of apple pomace and without hot air pre-drying. J Food Eng, 80, 536-544.
  • Dadalı G, Apar DK, Özbek B. 2007. Microwave Drying Kinetics of Okra. Drying Technology, 25, 917-924.
  • Ayensu A. 1997. Dehydration of Food Crops Using a Solar Dryer With Convective Heat Flow. Solar Energy, 59(4-6), 121-126.
  • Sarsavadiva P, Sawhney R, Pangavhane DR, Sing I. 1999. Drying Behaviour of Brined Onion Slices. J Food Eng, 40, 219-226.
  • Yaldız O, Ertekin C, Uzun HI. 2000. Çekirdeksiz Üzümün İnce Tabaka Halinde Günefl Enerji ile Kurutulmasının Matematiksel Modellemesi Üzerinde Bir Arafltırma. 19. Ulusal Tarımsal Mekanizasyon Kongresi Bildiri Kitabı, Erzurum, 345-350 s.
  • Yaldız O, Ertekin C. 2001. Thin Layer Solar Drying of Some Vegetables. Drying Technol, 19, 583-597.
  • Doymaz I. 2007. The kinetics of forced convective air-drying of pumpkin slices. J Food Eng, 79, 243-248.
  • Yağcıoğlu A, Değirmencioğlu A, Çağatay F. 1999. Drying Charcteristics of Laurel Leaves Under Different Drying Condition. 7th Int. Congress on Agriculturel Mechanization and Energy, pp. 565-569, Adana.
  • Madamba PS, Driscoll RH, Buckle KA. 1996. Thin Layer Drying Characteristics of GarlicSlices. J Food Eng, 29, 75-97.
  • Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. 1980. A model for Ear Corn. Drying Technol ASAE, 23, 1261-1271.
  • Wang CY, Sing RP. 1978. A Single Layer Drying Equation for Rough Rice. Am. Soc. Agr. Eng, St. Joseph, MI, 78, 3001.
  • Sacilik K, Keskin R, Elicin AK. 2006. Mathematical modeling of solar tunnel drying of thin layer organic tomato. J Food Eng, 73, 231-238. 26. Verma LR, Bucklin JB, Endan F, Wratten T. 1985. Effects of Drying Air Parameters on Rice Drying Models. Technol ASAE, 28, 296-301.
  • Karathanos VT. 1999. Determination on Water Content of Dried Fruits by Drying Kinetics. J Food Eng, 39, 337-344.
  • Midilli A, Küçük H, Yapar Z. 2002. A New Model for Single-Layer Drying. Drying Technol, 20, 1503-1513.
  • Pangavhane DR, Sawhney PN, Sarsavadia PN. 1999. Effect of Various Dipping Pretreatments on Drying Kinetics of Thompson Seedless Grapes. J Food Eng, 39, 211-216.
  • Karaaslan SN. 2008. Sebze ve Endüstri Bitkilerinin Mikrodalgayla Kurutulması Üzerine Çalıfllmalar. Doktora Tezi, Çukurova Üniversitesi, Tarım Makinaları Anabilim Dalı, Adana, Türkiye, 195 s. 31. Demiray E, Tulek Y. 2012. Thin-layer drying of tomato (Lycopersium esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transfer, 48; pp. 841-847.
  • Giovanelli G, Zanoni B, Lavelli V, Nani R. 2002. Water Sorption, Drying and Antioxidant Properties of Dried Tomato Products. J Food Eng, 52, 135-141.
  • Muratore G, Rizzo V, Licciardello F, Maccarone E. 2008. Partial dehydration of cherry tomato at different temperature and nutritional quality of the products. Food Chem, 111, 887-891.
  • Goula AM, Adamopoulos KG. 2009. Modeling the rehydration process of dried tomato. Drying technol, 27, 1078-1088.
  • Al-Harahsheh M, Al-Muhtaseb H, Magee TRA. 2009. Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration. Chem Eng Proces, 48, 524-531.
  • Çelen S, Kahveci K. 2013. Microwave Drying Behaviour of Tomato Slices. Czech J Food Sci, 2, 132-138.
  • Arslan D, Özcan MM. 2011. Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters. CyTA-J Food,9, 229-236.

EFFECT OF DRYING METHODS ON CHARACTERISTICS OF CHERRY TOMATO AND MATHEMATICAL MODELING

Year 2016, Volume: 41 Issue: 4, 197 - 204, 01.08.2016

Abstract

In this study, cherry tomatoes (Lycopersicon esculentum var. Cerasiforme) were dried with two differentmethods (tray dryer (TD) and microwave (MW)) using different temperatures (60, 70 and 80 °C)-MWpowers (140, 210 and 280 W). The effects of drying parameters on some drying characteristics of cherrytomatoes were investigated. Thirteen mathematical models available in the literature were fitted to theexperimental moisture ratio data and the coefficients of the models were determined by non-linearregression analysis. It was observed that drying in microwave oven has reduced the drying time by38%. The effective moisture diffusivities increased with increasing temperature and MW power. Thebest fit models were found as Logarithmic, Wang&Sing and Midilli. The activation energy values werefound as 25.00 ve 15.3 W/g for samples dried with TD and MW, respectively. The closest color valuesto wet sample were detected at 60 °C for TD, but there were no differences between MW powers. Colorvalues of MW samples were found be better than TD samples. Maximum rehydration rate was detectedat 60 °C for TD and 210 W for MW

References

  • FAO. Gıda ve Tarım Örgütü, Domates üretim istatistikleri http://www.fao.org/statistics/en/ (Eriflim 17 Temmuz 2015).
  • Ulusal Gıda Kompozisyonları Veri Tabanı http://http://www.turkomp.gov.tr/ (Eriflim 17 Kasım 2015).
  • Ertekin C, Yaldiz O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng, 63, 349-359.
  • Guo X, Xia C, Tan Y, Chen I, Ming J. 2014. Mathematical modeling and effect of various hot-air drying on mushroom (Lentinus edodes). J Integr Agric, 13, 207-216.
  • Esfahani JA, Majdi H, Barati E. 2014. Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: Apple slices. J Food Eng, 123, 87-93.
  • Orikasa T, Koide S, Okamoto S, Imaizumi T, Muramatsu Y, Takeda J, Shiina T, Tagawa A. 2014. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. J Food Eng, 125, 51-58.
  • Schubert H, Regier M. 2005. The Microwave Processing of Foods. Woodhead Cambridge, UK. 8. Wang, J. and Xi, Y.S. 2005. Drying ckaracteristics and drying quality of carrot using a two-stage microwave process. J Food Eng, 68, 505-511.
  • Torringa E, Esveld E, Scheewe I, van den Berg R, Bartels P. 2001. Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. J Food Eng, 49, 185-191.
  • Esehaghbeygi AA, Pirnazari K, Sadeghi M. 2014. Quality assessment of electrohydrodynamic & microwave dehydrated banana slices. Food Sci Technol, 55, 565-571.
  • Dak M, Pareek NK. 2014. Effective moisture diffusivity of pomegranate arils undergoing microwave-vacuum drying. J Food Eng, 122, 117-121. 12. Zarein M, Samadi SH, Ghobadian B. 2015. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J Saudi Society Agric Sci, 14(1), 41-47.
  • Hunterlab. 2008. Hunter Versus CIE 1976 L*, a*, b*. Applications Note. 13(2), 4 pp.
  • Wang Z, Sun J, Chen F, Liao X, Hu X. 2007. Mathematical modeling on thin layer microwave drying of apple pomace and without hot air pre-drying. J Food Eng, 80, 536-544.
  • Dadalı G, Apar DK, Özbek B. 2007. Microwave Drying Kinetics of Okra. Drying Technology, 25, 917-924.
  • Ayensu A. 1997. Dehydration of Food Crops Using a Solar Dryer With Convective Heat Flow. Solar Energy, 59(4-6), 121-126.
  • Sarsavadiva P, Sawhney R, Pangavhane DR, Sing I. 1999. Drying Behaviour of Brined Onion Slices. J Food Eng, 40, 219-226.
  • Yaldız O, Ertekin C, Uzun HI. 2000. Çekirdeksiz Üzümün İnce Tabaka Halinde Günefl Enerji ile Kurutulmasının Matematiksel Modellemesi Üzerinde Bir Arafltırma. 19. Ulusal Tarımsal Mekanizasyon Kongresi Bildiri Kitabı, Erzurum, 345-350 s.
  • Yaldız O, Ertekin C. 2001. Thin Layer Solar Drying of Some Vegetables. Drying Technol, 19, 583-597.
  • Doymaz I. 2007. The kinetics of forced convective air-drying of pumpkin slices. J Food Eng, 79, 243-248.
  • Yağcıoğlu A, Değirmencioğlu A, Çağatay F. 1999. Drying Charcteristics of Laurel Leaves Under Different Drying Condition. 7th Int. Congress on Agriculturel Mechanization and Energy, pp. 565-569, Adana.
  • Madamba PS, Driscoll RH, Buckle KA. 1996. Thin Layer Drying Characteristics of GarlicSlices. J Food Eng, 29, 75-97.
  • Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. 1980. A model for Ear Corn. Drying Technol ASAE, 23, 1261-1271.
  • Wang CY, Sing RP. 1978. A Single Layer Drying Equation for Rough Rice. Am. Soc. Agr. Eng, St. Joseph, MI, 78, 3001.
  • Sacilik K, Keskin R, Elicin AK. 2006. Mathematical modeling of solar tunnel drying of thin layer organic tomato. J Food Eng, 73, 231-238. 26. Verma LR, Bucklin JB, Endan F, Wratten T. 1985. Effects of Drying Air Parameters on Rice Drying Models. Technol ASAE, 28, 296-301.
  • Karathanos VT. 1999. Determination on Water Content of Dried Fruits by Drying Kinetics. J Food Eng, 39, 337-344.
  • Midilli A, Küçük H, Yapar Z. 2002. A New Model for Single-Layer Drying. Drying Technol, 20, 1503-1513.
  • Pangavhane DR, Sawhney PN, Sarsavadia PN. 1999. Effect of Various Dipping Pretreatments on Drying Kinetics of Thompson Seedless Grapes. J Food Eng, 39, 211-216.
  • Karaaslan SN. 2008. Sebze ve Endüstri Bitkilerinin Mikrodalgayla Kurutulması Üzerine Çalıfllmalar. Doktora Tezi, Çukurova Üniversitesi, Tarım Makinaları Anabilim Dalı, Adana, Türkiye, 195 s. 31. Demiray E, Tulek Y. 2012. Thin-layer drying of tomato (Lycopersium esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transfer, 48; pp. 841-847.
  • Giovanelli G, Zanoni B, Lavelli V, Nani R. 2002. Water Sorption, Drying and Antioxidant Properties of Dried Tomato Products. J Food Eng, 52, 135-141.
  • Muratore G, Rizzo V, Licciardello F, Maccarone E. 2008. Partial dehydration of cherry tomato at different temperature and nutritional quality of the products. Food Chem, 111, 887-891.
  • Goula AM, Adamopoulos KG. 2009. Modeling the rehydration process of dried tomato. Drying technol, 27, 1078-1088.
  • Al-Harahsheh M, Al-Muhtaseb H, Magee TRA. 2009. Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration. Chem Eng Proces, 48, 524-531.
  • Çelen S, Kahveci K. 2013. Microwave Drying Behaviour of Tomato Slices. Czech J Food Sci, 2, 132-138.
  • Arslan D, Özcan MM. 2011. Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters. CyTA-J Food,9, 229-236.
There are 33 citations in total.

Details

Other ID JA46YE62NP
Journal Section Research Article
Authors

Naciye Kutlu

Aslı İşci This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 41 Issue: 4

Cite

APA Kutlu, N., & İşci, A. (2016). KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ. Gıda, 41(4), 197-204.
AMA Kutlu N, İşci A. KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ. The Journal of Food. August 2016;41(4):197-204.
Chicago Kutlu, Naciye, and Aslı İşci. “KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ”. Gıda 41, no. 4 (August 2016): 197-204.
EndNote Kutlu N, İşci A (August 1, 2016) KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ. Gıda 41 4 197–204.
IEEE N. Kutlu and A. İşci, “KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ”, The Journal of Food, vol. 41, no. 4, pp. 197–204, 2016.
ISNAD Kutlu, Naciye - İşci, Aslı. “KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ”. Gıda 41/4 (August 2016), 197-204.
JAMA Kutlu N, İşci A. KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ. The Journal of Food. 2016;41:197–204.
MLA Kutlu, Naciye and Aslı İşci. “KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ”. Gıda, vol. 41, no. 4, 2016, pp. 197-04.
Vancouver Kutlu N, İşci A. KURUTMA YÖNTEMLERİNİN KİRAZ DOMATESİN KURUTMA KARAKTERİSTİKLERİ ÜZERİNE ETKİSİ VE MATEMATİKSEL MODELLEMESİ. The Journal of Food. 2016;41(4):197-204.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/