Research Article
BibTex RIS Cite

LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU

Year 2021, Volume: 46 Issue: 6, 1467 - 1480, 15.10.2021
https://doi.org/10.15237/gida.GD21118

Abstract

Sunulan bu çalışmada buğday kepeği, mısır koçanı ve ayçiçeği tablasından mikro-akışkan tekniği kullanılarak nanolifler elde edildikten sonra farklı zincir uzunluklarına sahip yağ asitleri (C6, C12, C18, C18:1) ile farklı derecelerde esterleştirilmesinin optimizasyonu yapılmıştır. İlk olarak, selülozik materyal NaOH ile muamele edildi ve daha sonra nano-selüloz lifi elde etmek için kolloid değirmen ve mikro akışkanlaştırıcıda öğütüldü. Bu liflerde selüloz, lignin ve su tutma kapasitesi analizleri yapılmıştır. Örneklerin selüloz içeriği arttıkça su tutma kapasitelerinin arttığı belirlendi. Bu lifler, farklı esterleşme derecelerinde nanoselüloz-yağ asidi esterleri elde etmek için farklı yağ asitleri ile esterleştirildi. Bu sayede, farklı hidrofilik ve lipofilik gruplara sahip nano-selüloz yağ asidi esterleri elde edildi (esterleşme dereceleri 0,41-2,99). Reaksiyon süresinin ve kullanılan yağ asidi miktarının arttırılması, esterleşme reaksiyonunun yüksek oranda gerçekleşmesini sağladı. Maksimum esterleşme derecesine sahip ürünler, 90°C'de 300 dakika sonunda anhidroglükoz birimi başına ortalama 2.45 asetil grubu ve 0.55 yağ asidi olarak elde edildi. Sonuç olarak, selülozun farklı yağ asitleri ve asetik anhidrit ile DMAc/LiCl ortamında farklı derecelerde esterleştirilmesi sağlandı.

Supporting Institution

TÜBİTAK

Project Number

TOVAG 118O315

Thanks

Yazarlar, bu çalışmaya bütçe sağladığı için TÜBİTAK'a (TOVAG 118O315) teşekkür eder.

References

  • Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S., Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose, Biomacromolecules, 8: 2149-2155.
  • Anonim. (1998). Tappi Test Methods, Tappi Press, Atlanta, Georgia.
  • AOAC. (1998). Official methods of nalysis. (16th ed.) Arlinghton, VA: Association of Official Analytical Chemists.
  • Bardak, S., Nemli, G., Bardak, T., Peker, H., Özcan, M. (2020). Ayçiçek Tablasının Yonga Levha Endüstrisinde Kullanılabilme Olanakları, Bartın Orman Fakültesi Dergisi, 22 (2): 485-499.
  • Christie, W.W. (1989). The preparation of derivatives of fatty acids. Ch. 4 in Gas Chromatography and Lipids: A Practical Guide” , Oily Press, 65-68.
  • Erinc, H., Mert, B., Tekin, A. (2018). Different sized wheat bran fibers as fat mimetic in biscuits: Its effects on dough rheology and biscuit quality. Journal of Food Science and Technology, 55: 3960–3970.
  • Gourson, C., Benhaddou, R., Granet, R., Krausz, P., Verneuil, B., Branland, P., Chauvelon, G., Thibault, J. F., Saulnier, L. (1999). Valorization of maize bran to obtain biodegradable plastic films, Journal of applied polymer science, 74(13): 3040-3045.
  • Heux, L., Chauve, G., Bonini, C. (2000). Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16: 8210–8212.
  • Jia, F., Liu, H., Zhang, G. (2016). Preparation of carboxymethyl cellulose from corncob, Procedia Environmental Sciences, 31: 98–102.
  • Khanjani, P. (2015). Cellulose-based superhydrophobic surfaces and dynamics of coupled chemical systems, Aalto Üniversitesi Uygulamalı Fizik Bölümü Lisans Tezi, Espoo, Finlandiya.
  • Kim, J., Montero, G., Habibi, Y., Hinestroza, J. P., Genzer, J., Argyropoulos, D. S., Rojas, O. J. (2009). Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix, Polymer Engineering & Science, 49(10): 2054-2061.
  • Kim, Y.J. and Liu, R.H. (1999). Selective increase in conjugated linoleic acid in milk fat by crystallization, Journal Food Science, 64: 792-795.
  • Kondo, T. (1997). The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives, Journal of Polymer Science Part B: Polymer Physics, 35(4):717-723.
  • Krässig, H. A. (1992). Cellulose: Structure, accessibility, and reactivity, Cellulose (Copyrightc 1993 Gordon and Breach Science).
  • Kürschner, K., Hoffner A. (1969). Ein neues Verfahren zur Bestimmung der Zellulose in Itolzern und Zellsoffen, Technologie und Chemie der Papier, Zellstoff-Fabrilation, 26:125-139, Germany.
  • Liu, G., and Zhang, G. (2008). Periodic swelling and collapse of polyelectrolyte brushes driven by chemical oscillation, The Journal of Physical Chemistry B, 112(33):10137-10141.
  • McConnell, A. A., Eastwood, M. A., Mitchell, W. D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function, Journal of the Science of Food and Agriculture, 25:1457-1464.
  • Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., Lindman, B. (2012). Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions, Cellulose, 19(3):581-587.
  • Mert, B., Tekin, A., Erinç, H., Koçak, G., Bigikoçin, E., Ketenoğlu, O., Şahin, E. (2011). Bitkisel Kökenli Atıklardan Mikro-Akışkan Yöntemiyle Nano boyutlarda Reoloji Düzenleyicilerin Üretilmesi: Emülsiyonlarda, kolloitlerde ve Hamur Ürünlerinde Kullanılması, TUBİTAK Proje No: 108M169.
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40:3941–94.
  • Rojas, O. J., Montero, G. A., Habibi, Y. (2009). Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers, Journal of Applied Polymer Science, 113(2): 927-935.
  • Siró, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459-494.
  • Vaca-Garcia, C., Borredon, M.E. (1999). Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: reactions with fatty acids, Bioresource Technology, 70:135-142.
  • Wang, Z. M., Li, L., Xiao, K. J., Wu, J. Y. (2009). Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity, Bioresource Technology, 100(4):1687-1690.
  • Wisniak, J. (2004). Anselme Payen. Educ. Química, 16:578-579.
  • Zhang, Y., Wei, L., Hu, H., Zhao, Z., Huang, Z., Huang, A., Shen, F., Liang, J., Qin, Y. (2018). Tribological properties of nano cellulose fatty acid esters as ecofriendly and effective lubricant additives, Cellulose, 25: 3091–3103.

OPTIMIZATION OF NANOCELLULOSE ESTERIFICATION WITH DIFFERENT FATTY ACIDS AND ACETIC ANHYDRIDE IN LITHIUM CHLORIDE/DIMETHYLACETAMIDE MEDIUM

Year 2021, Volume: 46 Issue: 6, 1467 - 1480, 15.10.2021
https://doi.org/10.15237/gida.GD21118

Abstract

In this study, nano fibers were obtained from wheat bran, corn cob and sunflower receptacle by using micro-fluidization and then esterified with fatty acids (C6, C12, C18, C18:1) in different degrees of substitution. Firstly, cellulosic material was treated with NaOH and then milled through the colloid mill and micro-fluidizer to obtain nano-cellulose fiber. Cellulose, lignin and water holding capacity analyzes were made in these fiber. It was determined that as the cellulose content of the samples increased, their water holding capacity increased. These fibers were esterified with different fatty acids in different degrees of substitution to obtain nanocellulose-fatty acid esters. In this way, nanocellulose-fatty acid esters with different hydrophilic and lipophilic groups were obtained (degrees of substitution 0,41-2,99). Increasing the reaction time and increasing the amount of fatty acid used ensured that the esterification reaction took place at a high rate. Products with the maximum degree of esterification were obtained after 300 minute at 90°C with an average of 2.45 acetyl groups and 0.55 fatty substituents per anhydroglucose unit. As a result, cellulose was esterified with different fatty acids and acetic anhydride in DMAc/LiCl medium at different degrees.

Project Number

TOVAG 118O315

References

  • Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S., Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose, Biomacromolecules, 8: 2149-2155.
  • Anonim. (1998). Tappi Test Methods, Tappi Press, Atlanta, Georgia.
  • AOAC. (1998). Official methods of nalysis. (16th ed.) Arlinghton, VA: Association of Official Analytical Chemists.
  • Bardak, S., Nemli, G., Bardak, T., Peker, H., Özcan, M. (2020). Ayçiçek Tablasının Yonga Levha Endüstrisinde Kullanılabilme Olanakları, Bartın Orman Fakültesi Dergisi, 22 (2): 485-499.
  • Christie, W.W. (1989). The preparation of derivatives of fatty acids. Ch. 4 in Gas Chromatography and Lipids: A Practical Guide” , Oily Press, 65-68.
  • Erinc, H., Mert, B., Tekin, A. (2018). Different sized wheat bran fibers as fat mimetic in biscuits: Its effects on dough rheology and biscuit quality. Journal of Food Science and Technology, 55: 3960–3970.
  • Gourson, C., Benhaddou, R., Granet, R., Krausz, P., Verneuil, B., Branland, P., Chauvelon, G., Thibault, J. F., Saulnier, L. (1999). Valorization of maize bran to obtain biodegradable plastic films, Journal of applied polymer science, 74(13): 3040-3045.
  • Heux, L., Chauve, G., Bonini, C. (2000). Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16: 8210–8212.
  • Jia, F., Liu, H., Zhang, G. (2016). Preparation of carboxymethyl cellulose from corncob, Procedia Environmental Sciences, 31: 98–102.
  • Khanjani, P. (2015). Cellulose-based superhydrophobic surfaces and dynamics of coupled chemical systems, Aalto Üniversitesi Uygulamalı Fizik Bölümü Lisans Tezi, Espoo, Finlandiya.
  • Kim, J., Montero, G., Habibi, Y., Hinestroza, J. P., Genzer, J., Argyropoulos, D. S., Rojas, O. J. (2009). Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix, Polymer Engineering & Science, 49(10): 2054-2061.
  • Kim, Y.J. and Liu, R.H. (1999). Selective increase in conjugated linoleic acid in milk fat by crystallization, Journal Food Science, 64: 792-795.
  • Kondo, T. (1997). The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives, Journal of Polymer Science Part B: Polymer Physics, 35(4):717-723.
  • Krässig, H. A. (1992). Cellulose: Structure, accessibility, and reactivity, Cellulose (Copyrightc 1993 Gordon and Breach Science).
  • Kürschner, K., Hoffner A. (1969). Ein neues Verfahren zur Bestimmung der Zellulose in Itolzern und Zellsoffen, Technologie und Chemie der Papier, Zellstoff-Fabrilation, 26:125-139, Germany.
  • Liu, G., and Zhang, G. (2008). Periodic swelling and collapse of polyelectrolyte brushes driven by chemical oscillation, The Journal of Physical Chemistry B, 112(33):10137-10141.
  • McConnell, A. A., Eastwood, M. A., Mitchell, W. D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function, Journal of the Science of Food and Agriculture, 25:1457-1464.
  • Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., Lindman, B. (2012). Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions, Cellulose, 19(3):581-587.
  • Mert, B., Tekin, A., Erinç, H., Koçak, G., Bigikoçin, E., Ketenoğlu, O., Şahin, E. (2011). Bitkisel Kökenli Atıklardan Mikro-Akışkan Yöntemiyle Nano boyutlarda Reoloji Düzenleyicilerin Üretilmesi: Emülsiyonlarda, kolloitlerde ve Hamur Ürünlerinde Kullanılması, TUBİTAK Proje No: 108M169.
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40:3941–94.
  • Rojas, O. J., Montero, G. A., Habibi, Y. (2009). Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers, Journal of Applied Polymer Science, 113(2): 927-935.
  • Siró, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459-494.
  • Vaca-Garcia, C., Borredon, M.E. (1999). Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: reactions with fatty acids, Bioresource Technology, 70:135-142.
  • Wang, Z. M., Li, L., Xiao, K. J., Wu, J. Y. (2009). Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity, Bioresource Technology, 100(4):1687-1690.
  • Wisniak, J. (2004). Anselme Payen. Educ. Química, 16:578-579.
  • Zhang, Y., Wei, L., Hu, H., Zhao, Z., Huang, Z., Huang, A., Shen, F., Liang, J., Qin, Y. (2018). Tribological properties of nano cellulose fatty acid esters as ecofriendly and effective lubricant additives, Cellulose, 25: 3091–3103.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Özlem Erinç 0000-0001-7968-000X

Hakan Erinç 0000-0001-8858-4570

Behiç Mert This is me 0000-0001-8450-8810

Ayşe Özbey 0000-0003-3210-4077

Project Number TOVAG 118O315
Publication Date October 15, 2021
Published in Issue Year 2021 Volume: 46 Issue: 6

Cite

APA Erinç, Ö., Erinç, H., Mert, B., Özbey, A. (2021). LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU. Gıda, 46(6), 1467-1480. https://doi.org/10.15237/gida.GD21118
AMA Erinç Ö, Erinç H, Mert B, Özbey A. LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU. The Journal of Food. October 2021;46(6):1467-1480. doi:10.15237/gida.GD21118
Chicago Erinç, Özlem, Hakan Erinç, Behiç Mert, and Ayşe Özbey. “LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU”. Gıda 46, no. 6 (October 2021): 1467-80. https://doi.org/10.15237/gida.GD21118.
EndNote Erinç Ö, Erinç H, Mert B, Özbey A (October 1, 2021) LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU. Gıda 46 6 1467–1480.
IEEE Ö. Erinç, H. Erinç, B. Mert, and A. Özbey, “LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU”, The Journal of Food, vol. 46, no. 6, pp. 1467–1480, 2021, doi: 10.15237/gida.GD21118.
ISNAD Erinç, Özlem et al. “LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU”. Gıda 46/6 (October 2021), 1467-1480. https://doi.org/10.15237/gida.GD21118.
JAMA Erinç Ö, Erinç H, Mert B, Özbey A. LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU. The Journal of Food. 2021;46:1467–1480.
MLA Erinç, Özlem et al. “LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU”. Gıda, vol. 46, no. 6, 2021, pp. 1467-80, doi:10.15237/gida.GD21118.
Vancouver Erinç Ö, Erinç H, Mert B, Özbey A. LİTYUM KLORİT/DİMETİLASETAMİT ORTAMINDA NANOSELÜLOZUN ASETİK ANHİDRİT VE FARKLI YAĞ ASİTLERİ İLE ESTERİFİKASYONUNUN OPTİMİZASYONU. The Journal of Food. 2021;46(6):1467-80.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/