BibTex RIS Cite

Transgenic Cereals (Turkish with English Abstract)

Year 2007, Volume: 32 Issue: 1, 51 - 59, 01.02.2007

Abstract

Genetic engineering of food is the science which involves conscious modification of the genetic material of plants or animals. Since the mid 1960s, genetically modified organisms (GMO) have been grown commercially in the world on a scale that has increased steadily over the years. With advances in gene transfer technology, more and more genes have been transferred to cereals for various purposes. There are some problems in genetic modification of cereals, mainly due to their recalcitrance to in vitro regeneration and their resistance to Agrobacterium infection. However, development of various DNA delivery methods has led the development of reliable transformation protocols for the major cereals including wheat, rice and maize. Cereals have been transformed primarily by direct transformation methods, such as particle bombardment, which has been the most popular technique to date. However, Agrobacterium-mediated transformation can be efficiently used in cereals such as maize and rice. Despite such potential benefits, there are concerns regarding possible adverse effects of genetic modified organisms on health and on the environment.

References

  • Uzogara SG. 2000. The impact of genetik modifikation of human foods in the 21st century. Biotecnology Advences, 18: 179-206.
  • Holm F. 2002. GM Foods. Food group Denmark, p. 32, Denmark.
  • Wagner WC. 2002. Genetically engineered crops and food is back to the basics of thecnology diffusion. Technology in Society, 24: 265-283.
  • Thamson, J. 2003. Genetically modified food crops for improving agricaltural pactice and their effects on human health. Trends in food science technology, 14: 210-228.
  • König A. 2004. Assesment of the safety of foods derived from genetically modified (GM) crops. Food and Chemical Toxicology, 42: 1047-1088.
  • Komari T. 1998. Advances in cereal gene transfer. Current Opinion in Plant Biology, 1: 61-165.
  • Job D. 2002. Plant biotechnology in agriculture. Biochime, 84: 1105-1110.
  • Engel KH. 2004. Unitended effects and their detection in genetically modified crops. Food and Chemical Toxicology, 42: 1089-1125.
  • Eede G. 2004. The relevance of geen transfer to safety of food and feed derived from genetically. Food and Chemical Toxicology, 42: 1127-1156.
  • Songstad DD, Somers DA, Griesbach RJ. 1995. Advances in alternative DNA delivery techniques. Plant Cell Tiss. Org. Cult., 40: 1–15.
  • Matsushita J, Otani M, Wakita Y, Tanaka O, Shimada T. 1999. Transgenic plant regeneration through silicon carbide wiskermediated transformation of rice (Oryza sativa L.). Breed. Sci., 49: 21–26.
  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59–87.
  • Jauhar PP, Chibbar RN. 1999. Chromosome-mediated and direct gene transfers in wheat. Genome, 42: 570–583.
  • Repellin A, Baga M, Jauhar PP, Chibbar RN. 2001. Genetic enrichment of cereal crops via alien gene transfer: New challenges, Plant Cell. Tissue and Organ Culture, 64: 159 -183.
  • Rosegrant MW, Leach N, Gerpacio RV. 1999. Alternative futures for world cereal and meat consumption, Proc. Nutr. Soc., 58: 219-/234.
  • Herrera-Estrella LR. 2000. Genetically Modified Crops and Developing Countries. Plant Physiology, 124: 923–925.
  • Rakszegi M, Tamas C, Szucs, P, Tamas L, Bedo D. 2001. Current status of wheat transformation. J. Plant Biotechnol., 3: 67-81.
  • Jones HD. 2005. Review Wheat transformation: current technology and applications to grain development and composition. Journal of Cereal Science, 41: 137–147.
  • Kıyak S. 2004. Genetik olarak değiştirilmiş gıdalar, cartagena biyogüvenlik protokolu ve türkiye’de durum. Genç Bakış, 5: 1-20.
  • Sahrawat AK, Becker D, Lu S, Lorz H. 2003. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 165: 1147-1168.
  • Vasil V, Castillo AM, Fromm ME, Vasil IK. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology, 10: 667-674.
  • Vasil V, Brown SM, Re D, Fromm ME, Vasil IK. 1991. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotechnology, 9: 743-747.
  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM. 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promotorb-glucuronidase gene. Plant Mol. Biol., 22: 491-506.
  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115: 971-/980.
  • Manoharan M, Dahleen LS. 2002. Genetic transformation of the commercial barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus. Plant Cell Rep., 21: 76–80.
  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ. 1998. Genetically transformed maize plants from protoplasts. Science, 240: 204–207.
  • Tang K, Zhao E, Sun X, Wang B, Lu X. 2001. Production of Transgenic Rice Homozygous Lines with Enhanced Resistance to the Rice Brown Planthopper. Acta Biotechnol., 21: 117–128.
  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. 2000. Engineering the provitamin A (_-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science, 287: 303-305.
  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I. 2002. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr., 3: 506-510.
  • Scott MP, Pollak LM. 2005. Transgenic Maize. Starch, 57: 187-195.
  • Novak WK, Haslberger AG. 2000. Substantial Equivalence of Antinutrients and Inherent Plant Toxins in Genetically Modified Novel Foods. Food and Chemical Toxicology, 38,:473 - 483.
  • Wisniewski JP. 2002. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy. Biochimie, 84: 1095-1103.
  • Belzei FJ. 2002. Transgenic, trasplastomic and other genetically modified plants; a Canadian perspective. Biochimie, 84: 1111-1118.

Transgenik Tahıllar

Year 2007, Volume: 32 Issue: 1, 51 - 59, 01.02.2007

Abstract

Gıda genetik mühendisliği bitki ya da hayvanların genetik materyallerinin bilinçli bir şekilde değiştirilmesini içeren bir bilim dalıdır. Genetik modifiye organizmalar 1960 'lardan beri dünyada yetiştirilmekte olup, son yıllarda oldukça yaygınlaşmıştır. Gen transfer teknolojisindeki gelişmeler ile, pek çok gen çeşitli amaçlar için tahıllara transfer edilmiştir. İn vitro rejenerasyonya karşı inatçılıkları ve Agrobacterium  'a karşı olan dirençlerinden dolayı, tahılların genetik modifikasyon çalışmalarında bir takım zorluklar bulunmaktadır. Ancak, DNA transfer metotlarında meydana gelen gelişmeler buğday, pirinç ve mısır gibi önemli tahıllar için güvenilir transformasyon protokollerinin gelişmesine neden olmuştur. Tahıllar temelde, şimdiye kadar en popular teknik olan, partikül bombardıman tekniği gibi direkt transformasyon metotları ile modifiye edilmektedir. Bununla birlikte, Agrobacterium aracılığı ile yapılan transformasyon mısır ve pirinç gibi tahıllarda etkili bir şekilde kullanılabilmektedir. Bir takım potansiyel faydalarına rağmen, genetik modifiye organizmaların insan sağlığı ve çevre üzerine olası olumsuz etkileri ile ilgili endişeler bulunmaktadır.  

References

  • Uzogara SG. 2000. The impact of genetik modifikation of human foods in the 21st century. Biotecnology Advences, 18: 179-206.
  • Holm F. 2002. GM Foods. Food group Denmark, p. 32, Denmark.
  • Wagner WC. 2002. Genetically engineered crops and food is back to the basics of thecnology diffusion. Technology in Society, 24: 265-283.
  • Thamson, J. 2003. Genetically modified food crops for improving agricaltural pactice and their effects on human health. Trends in food science technology, 14: 210-228.
  • König A. 2004. Assesment of the safety of foods derived from genetically modified (GM) crops. Food and Chemical Toxicology, 42: 1047-1088.
  • Komari T. 1998. Advances in cereal gene transfer. Current Opinion in Plant Biology, 1: 61-165.
  • Job D. 2002. Plant biotechnology in agriculture. Biochime, 84: 1105-1110.
  • Engel KH. 2004. Unitended effects and their detection in genetically modified crops. Food and Chemical Toxicology, 42: 1089-1125.
  • Eede G. 2004. The relevance of geen transfer to safety of food and feed derived from genetically. Food and Chemical Toxicology, 42: 1127-1156.
  • Songstad DD, Somers DA, Griesbach RJ. 1995. Advances in alternative DNA delivery techniques. Plant Cell Tiss. Org. Cult., 40: 1–15.
  • Matsushita J, Otani M, Wakita Y, Tanaka O, Shimada T. 1999. Transgenic plant regeneration through silicon carbide wiskermediated transformation of rice (Oryza sativa L.). Breed. Sci., 49: 21–26.
  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59–87.
  • Jauhar PP, Chibbar RN. 1999. Chromosome-mediated and direct gene transfers in wheat. Genome, 42: 570–583.
  • Repellin A, Baga M, Jauhar PP, Chibbar RN. 2001. Genetic enrichment of cereal crops via alien gene transfer: New challenges, Plant Cell. Tissue and Organ Culture, 64: 159 -183.
  • Rosegrant MW, Leach N, Gerpacio RV. 1999. Alternative futures for world cereal and meat consumption, Proc. Nutr. Soc., 58: 219-/234.
  • Herrera-Estrella LR. 2000. Genetically Modified Crops and Developing Countries. Plant Physiology, 124: 923–925.
  • Rakszegi M, Tamas C, Szucs, P, Tamas L, Bedo D. 2001. Current status of wheat transformation. J. Plant Biotechnol., 3: 67-81.
  • Jones HD. 2005. Review Wheat transformation: current technology and applications to grain development and composition. Journal of Cereal Science, 41: 137–147.
  • Kıyak S. 2004. Genetik olarak değiştirilmiş gıdalar, cartagena biyogüvenlik protokolu ve türkiye’de durum. Genç Bakış, 5: 1-20.
  • Sahrawat AK, Becker D, Lu S, Lorz H. 2003. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 165: 1147-1168.
  • Vasil V, Castillo AM, Fromm ME, Vasil IK. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology, 10: 667-674.
  • Vasil V, Brown SM, Re D, Fromm ME, Vasil IK. 1991. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotechnology, 9: 743-747.
  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM. 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promotorb-glucuronidase gene. Plant Mol. Biol., 22: 491-506.
  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115: 971-/980.
  • Manoharan M, Dahleen LS. 2002. Genetic transformation of the commercial barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus. Plant Cell Rep., 21: 76–80.
  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ. 1998. Genetically transformed maize plants from protoplasts. Science, 240: 204–207.
  • Tang K, Zhao E, Sun X, Wang B, Lu X. 2001. Production of Transgenic Rice Homozygous Lines with Enhanced Resistance to the Rice Brown Planthopper. Acta Biotechnol., 21: 117–128.
  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. 2000. Engineering the provitamin A (_-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science, 287: 303-305.
  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I. 2002. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr., 3: 506-510.
  • Scott MP, Pollak LM. 2005. Transgenic Maize. Starch, 57: 187-195.
  • Novak WK, Haslberger AG. 2000. Substantial Equivalence of Antinutrients and Inherent Plant Toxins in Genetically Modified Novel Foods. Food and Chemical Toxicology, 38,:473 - 483.
  • Wisniewski JP. 2002. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy. Biochimie, 84: 1095-1103.
  • Belzei FJ. 2002. Transgenic, trasplastomic and other genetically modified plants; a Canadian perspective. Biochimie, 84: 1111-1118.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

M. Murat Karaoğlu This is me

H.gürbüz Kotancılar This is me

Publication Date February 1, 2007
Published in Issue Year 2007 Volume: 32 Issue: 1

Cite

APA Karaoğlu, M. M. ., & Kotancılar, H. . (2007). Transgenik Tahıllar. Gıda, 32(1), 51-59.
AMA Karaoğlu MM, Kotancılar H. Transgenik Tahıllar. The Journal of Food. February 2007;32(1):51-59.
Chicago Karaoğlu, M. Murat, and H.gürbüz Kotancılar. “Transgenik Tahıllar”. Gıda 32, no. 1 (February 2007): 51-59.
EndNote Karaoğlu MM, Kotancılar H (February 1, 2007) Transgenik Tahıllar. Gıda 32 1 51–59.
IEEE M. M. . Karaoğlu and H. . Kotancılar, “Transgenik Tahıllar”, The Journal of Food, vol. 32, no. 1, pp. 51–59, 2007.
ISNAD Karaoğlu, M. Murat - Kotancılar, H.gürbüz. “Transgenik Tahıllar”. Gıda 32/1 (February 2007), 51-59.
JAMA Karaoğlu MM, Kotancılar H. Transgenik Tahıllar. The Journal of Food. 2007;32:51–59.
MLA Karaoğlu, M. Murat and H.gürbüz Kotancılar. “Transgenik Tahıllar”. Gıda, vol. 32, no. 1, 2007, pp. 51-59.
Vancouver Karaoğlu MM, Kotancılar H. Transgenik Tahıllar. The Journal of Food. 2007;32(1):51-9.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/