BibTex RIS Cite

Stability of P-Nitrophenyl Propionate Substrate for Spectrophotometric Measurement of Lipase Activity (Turkish with English Abstract)

Year 2013, Volume: 38 Issue: 3, 143 - 149, 01.06.2013

Abstract

p-Nitrophenol alconate esters are preferred substrates for spectrophotometric measurement of lipase activity. The method relies on lipolytic release of chromogenic p-nitrophenol (pNP) from the substrates. The study aimed to investigate susceptibility of p-nitrophenyl propionate (pNPP) substrate against non-enzymatic hydrolysis and absorptivity of pNP under various conditions. In general, greater amounts of pNPP were self-hydrolyzed upon increases in storage temperature or duration. Compared to refrigeration temperature, the storage at room temperature for 10 days resulted in ten-fold increase in spontaneous hydrolysis from 0.512 mM pNPP solution. Upon sequential incubation at 30, 60 and 95o C for the corresponding durations of 90, 20 and 5 minutes, the rates of non enzymatic hydrolysis were 0.0014, 0.0154 and 0.0456 absorbans per min, respectively. pNP product absorbans at 404 nm was strongly affected by pH between 6 and 8. Also, increasing buffer capacity from 0.1 to 1.0 M was resulted in at least twofold linear increase in absorbans at 404 or 348 nm. These susceptibilities may be corrected by avoidance of conditions leading to non-enzymatic hydrolysis as well as standardizations of pH and buffer capacity in the assay medium. Finally to minimize minor errors, the enzyme assay should be carried out along with a “parallel control” which contains all components of assay mixture except for the enzyme.

References

  • Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr Opin Biotech, 13, 390-397.
  • Bastida A, Sabuquillo P, Armisen P. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng, 58, 486-493.
  • Paiva AL, Balca VM, Malcata FX. 2000. Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microb Tech, 27, 426-446.
  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B-Enzym, 17, 133-142.
  • Schmidt M, Bornscheuer UT. 2005. High- throughput assays for lipases and esterases. Biomol Eng, 22, 51-56.
  • Furutani T, Su R, Ooshima H, Kato J. 1995. Simple screening method for lipase for transesterification in organic solvent. Enzyme Microb Tech, 17, 1067-1072.
  • Gupta R, Rathi P, Gupta N, Bradoo S. 2003. Lipase assays for conventional and molecular screening: An overview. Biotechnol Appl Bioc, 37, 63-71.
  • Palomo JM, Ortiz C, Fernández-Lorente G, Fuentes M, Guisán JM, Fernández-Lafuente R. 2005. Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Tech, 36, 447-454.
  • Pizarro C, Fernandez-Torroba MA, Benito C, Gonzalez-Saiz JM. 1997. Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol Bioeng, 53, 497-506.
  • Helistö P, Korpela T. 1998. Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microb Tech, 23, 113-117.
  • Dalmau E, Montesinos J, Lotti M, Casas C. 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Tech, 26, 657-663.
  • de la Casa RM, Guisán JM, Sánchez-Montero JM, Sinisterra JV. 2002. Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb Tech, 30, 30-40.
  • Beisson F, Tiss A, Riviere C, Verger R. 2000. Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Tech, 102, 133-153.
  • Bañó MC, González-Navarro H, Abad C. 2003. Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water–lipid interface. Biochim Biophys Acta, 1632, 55-61.
  • Pencreac’h G, Leullier M, Baratti JC. 1997. Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol Bioeng, 56, 181-189.
  • Abramic M, Lescic I, Korica T, Vitale L, Saenger W, Pigac J. 1999. Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme Microb Tech, 25, 522-529.
  • Palomo JM, Fuentes M, Fernández-Lorente G, Mateo C, Guisan JM, Fernández-Lafuente R. 2003. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules, 4, 1-6.

Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi

Year 2013, Volume: 38 Issue: 3, 143 - 149, 01.06.2013

Abstract

Lipaz aktivitesinin spektrofotometrik yöntemle ölçülmesinde p-nitrofenol esterleri tercih edilmektedir. Yöntem, bu substratlardan lipaz hidrolizi ile açık sarı renkli p-nitrofenol (pNP) oluşturulmasına dayanmaktadır. Bu çalışmada, lipaz aktivite ölçümünde kullanılan p-nitrofenil propiyonat (pNPP) substratının kararlılığına ve pNP ürününün ışık soğurmasına çevresel koşulların etkisi incelenmiştir. Bekletme sıcaklığı veya süresi arttıkça, daha fazla oranda pNPP’nin kendiliğinden parçalandığı görülmüştür. On günlük bir depolama sonunda, 4o C’ye kıyasla 20o C’de 10 katı oranında pNPP (0.512 mM) kendiliğinden parçalanmıştır. Birbirini takip edecek şekilde 30, 60 ve 95o C’lerde sırasıyla 90, 20 ve 5 dakika inkübasyon süreleri, dakikada 0.0014, 0.0154 ve 0.0456 absorbans artışlarına neden olmuştur. Öte yandan, oluşan pNP ürününün 400nm civarında göstereceği absorbans değeri pH 6-8 aralığında ortam pH’sına oldukça duyarlı iken; tampon kapasitesi arttıkça (0.1-1.0 M) pNP ürünün gösterdiği absorbans (404 veya 348 nm) doğrusal artarak en az 2 kat düzeyine çıkmıştır. Bu duyarlılıklar, substratın kendiliğinden hidrolizine neden olacak koşulların azaltılması, pH ve tampon kapasitesinin standardizasyonu ile minimize edilebilmektedir. Buna ilave olarak, enzim hariç tepkime karışımının tüm bileşenlerini içeren bir “paralel kontrol” eşliğinde denemelerin yürütülmesiyle küçük hata kaynaklarının çoğunlukla sınırlandırılabileceği tespit edilmiştir.

References

  • Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr Opin Biotech, 13, 390-397.
  • Bastida A, Sabuquillo P, Armisen P. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng, 58, 486-493.
  • Paiva AL, Balca VM, Malcata FX. 2000. Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microb Tech, 27, 426-446.
  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B-Enzym, 17, 133-142.
  • Schmidt M, Bornscheuer UT. 2005. High- throughput assays for lipases and esterases. Biomol Eng, 22, 51-56.
  • Furutani T, Su R, Ooshima H, Kato J. 1995. Simple screening method for lipase for transesterification in organic solvent. Enzyme Microb Tech, 17, 1067-1072.
  • Gupta R, Rathi P, Gupta N, Bradoo S. 2003. Lipase assays for conventional and molecular screening: An overview. Biotechnol Appl Bioc, 37, 63-71.
  • Palomo JM, Ortiz C, Fernández-Lorente G, Fuentes M, Guisán JM, Fernández-Lafuente R. 2005. Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Tech, 36, 447-454.
  • Pizarro C, Fernandez-Torroba MA, Benito C, Gonzalez-Saiz JM. 1997. Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol Bioeng, 53, 497-506.
  • Helistö P, Korpela T. 1998. Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microb Tech, 23, 113-117.
  • Dalmau E, Montesinos J, Lotti M, Casas C. 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Tech, 26, 657-663.
  • de la Casa RM, Guisán JM, Sánchez-Montero JM, Sinisterra JV. 2002. Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb Tech, 30, 30-40.
  • Beisson F, Tiss A, Riviere C, Verger R. 2000. Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Tech, 102, 133-153.
  • Bañó MC, González-Navarro H, Abad C. 2003. Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water–lipid interface. Biochim Biophys Acta, 1632, 55-61.
  • Pencreac’h G, Leullier M, Baratti JC. 1997. Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol Bioeng, 56, 181-189.
  • Abramic M, Lescic I, Korica T, Vitale L, Saenger W, Pigac J. 1999. Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme Microb Tech, 25, 522-529.
  • Palomo JM, Fuentes M, Fernández-Lorente G, Mateo C, Guisan JM, Fernández-Lafuente R. 2003. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules, 4, 1-6.
There are 17 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Eylem Özarslaner This is me

Nedim Albayrak This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 38 Issue: 3

Cite

APA Özarslaner, E. ., & Albayrak, N. . (2013). Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi. Gıda, 38(3), 143-149.
AMA Özarslaner E, Albayrak N. Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi. The Journal of Food. June 2013;38(3):143-149.
Chicago Özarslaner, Eylem, and Nedim Albayrak. “Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi”. Gıda 38, no. 3 (June 2013): 143-49.
EndNote Özarslaner E, Albayrak N (June 1, 2013) Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi. Gıda 38 3 143–149.
IEEE E. . Özarslaner and N. . Albayrak, “Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi”, The Journal of Food, vol. 38, no. 3, pp. 143–149, 2013.
ISNAD Özarslaner, Eylem - Albayrak, Nedim. “Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi”. Gıda 38/3 (June 2013), 143-149.
JAMA Özarslaner E, Albayrak N. Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi. The Journal of Food. 2013;38:143–149.
MLA Özarslaner, Eylem and Nedim Albayrak. “Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi”. Gıda, vol. 38, no. 3, 2013, pp. 143-9.
Vancouver Özarslaner E, Albayrak N. Lipaz Aktivitesinin Spektrofotometrik Yöntemle Belirlenmesinde Çevresel Koşulların P-Nitrofenil Propiyonat Substratının Kararlığına Etkisi. The Journal of Food. 2013;38(3):143-9.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/