Research Article
BibTex RIS Cite

Olasılık Öğretiminde Bilgisayar Destekli Öğretimin Rolü

Year 2018, Volume: 33 Issue: 3, 705 - 722, 31.07.2018

Abstract

Bu çalışma, bilgisayar destekli öğretimin (BDÖ) öğrencilerin olasılık
kavramlarını öğrenmelerine etkisini araştırmayı amaçlamaktadır. Bu kapsamda
geliştirilen Olasılık Başarı Testi kontrol gruplu araştırma tasarımı ile deney
öncesi ve sonrası deney ve kontrol grubundan 48 yedinci sınıf öğrencisine
uygulanmıştır. Veriler, kovaryant olarak bir ön test alındıktan sonra puanlar
üzerinde bir kovaryans analizi (ANCOVA) yapılarak etki boyutu değerleri
hesaplanarak analiz edilmiştir. Sonuçlar bilgisayar destekli öğretimin
geleneksel öğretime kıyasla öğrencilerin olasılık kavramlarını
geliştirmelerinde daha etkili olduğunu ortaya koymuştur. Bu araştırma,
özellikle olasılığın öğretilmesi için tasarlanan bilgisayar destekli öğretim
etkinliklerinin, öğrencilerin matematikteki kavramsal anlamalarını
geliştirmeleri için güçlü ve faydalı olduğu ve etkili öğretim için daha iyi bir
yol olabileceği söylenebilir.

References

  • Antoch, J., Cihák, M., & Pelzla, G. F. (2007). Teaching probability at secondary schools using computers. 56th Session of the ISI.
  • Baker, M., & Chick, H. L. (2007). Making the most of chance. Australian Primary Mathematics Classroom, 12(1), 8-13.
  • Batanero, C., & Serrano, L. (1999). The meaning of randomness for secondary school students. Journal for Research in Mathematics Education, 30(5), 558-567.
  • Best, J.& Kahn, J. (1989). Research In Education, Sixth Edition, Needham Heigts, Massachusetts.
  • Borg, W. (1987). Applying Educational Research, A Practical Guide For Teachers. Second Edition, Logman Inc., New York & London.
  • Bulut, S. (2001). Matematik öğretmen adaylarının olasılık performanslarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 33-39.
  • Chai, C. S., & Tan, S. C. (2009). Professional development of teachers for computer-supported collaborative learning: A knowledge-building approach. Teachers College Record, 111(5), 1296-1327.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Auflage). Hillsdale, NJ: Erlbaum
  • Dede, Y. (2011).Mathematics Education Values Questionnaire for Turkish Preservice Mathematics Teachers: Design, Validation, and Results. International Journal of Science and Mathematics Education, 9(3), 603-626.
  • Dekker, R. (1994). Graphs, small groups and the process of level raising, In A. Antibi (Ed.), Representations Graphique et Symbolique de la maternelle al Universite, Tome 1, Universite Paul Sabatier, Toulouse, 184-189.
  • Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51, 939-954.
  • Denscombe, M. (2010). The Good Research Guide for Small-scale Social Research Projects, 4th ed., Open University Press, McGraw-Hill, Glasgow.
  • Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. J. (2007). Students’ experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23(1), 496-514.
  • Dölen, E. (2005). Salih Zeki ve Darülfünun. Osmanlı Bilimi Araştırmaları, 7(1), 123-135.
  • English, L.D. (1993). Children’s strategies for solving two-and three-stage combinatorial problems. Journal for Research in Mathematics Education, 24(3), 255-273.
  • Fast, G. R. (1997). Using Analogies to overcome student teachers’ probability misconceptions. Journal of Mathematical Behavior, 16(4), 325-344.
  • Field, A. (2002). Discovering Statistics Using SPSS. Sage Publications Ltd., UK: London.
  • Fırat, S. (2011). Bilgisayar destekli eğitsel oyunlarla gerçekleştirilen matematik öğretiminin kavramsal öğrenmeye etkisi (Master's thesis, Adıyaman Üniversitesi).
  • Fırat, S., Gürbüz, R., & Doğan, M. F. (2016). Öğrencilerin Bilgisayar Destekli Argümantasyon Ortaminda Olasiliksal Tahminlerinin Incelenmesi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(3), 906-944.
  • Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children, D. Reidel Publishing Company.
  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal of Research in Science Teaching, 28(1), 96-105.
  • Fischbein, E., Nello, M.S., & Marino, M.S. (1991). Factors affecting probabilistic judgements in children and adolescents. Educational Studies in Mathematics, 22, 523-549.
  • González, J. A., Jover, L., Cobo, E., & Muñoz, P. (2010). A web-based learning tool improves student performance in statistics: A randomized masked trial. Computers & Education, 55(2), 704-713.
  • Gravetter, F.J.,&Forzano, L.B. (2008). Research Methods for the Behavioral Sciences, Cengage, Thousand Oaks, CA.
  • Gürbüz, R. (2006). Olasılık kavramlarının öğretimi için örnek çalışma yapraklarının geliştirilmesi. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 31(1), 111-123.
  • Gürbüz, R. (2007). Bilgisayar destekli öğretimin öğrencilerin kavramsal gelişimlerine etkisi: Olasılık örneği. Eurasian Journal of Educational Research, 28, 75-87.
  • Gürbüz, R. (2010). The Effect of Activity Based Instruction on Conceptual Development of Seventh Grade Students in Probability. International Journal of Mathematical Education in Science and Technology, 41(6), 743-767.
  • Gürbüz, R., & Birgin, O. (2012). The effect of computer-assisted teaching on remedying misconceptions: The case of the subject “probability”. Computers & Education, 58(3), 931-941.
  • Gürbüz, R. ve Erdem, E. (2014). Matematiksel ve Olasılıksal Muhakeme Arasındaki İlişkinin İncelenmesi: 7. Sınıf Örneği, Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16, 205-230.
  • Jones, G.A., Langrall, C.W., Thornton, C.A., & Timothy Mogill, A. (1997). A framework for assessing and nurturing young children’s thinking in probability. Educational Studies in Mathematics, 32, 101-125.
  • Kazıma, M. (2006). Malawian students’ meanings for probability vocabulary. Educational Studies in Mathematics, 64, 169-189.
  • Kim, H. S., Kil, H. J., & Shin, A. (2014). An analysis of variables affecting the ICT literacy level of Korean elementary school students. Computers & Education, 77, 29-38.
  • Lazakidou, G., & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education, 54, 3-13.
  • Millî Eğitim Bakanlığı (MEB) (2009). İlköğretim Matematik Dersi 6-8. Sınıflar Öğretim Programı ve Kılavuzu, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Millî Eğitim Bakanlığı (MEB) (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı ve Kılavuzu, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Moorhead, C. (2015). Experimental Designs. 1st ed. [ebook] New Hampshire: University of New Hampshire, pp.1-2. Available at: http://www.dartmouth.edu/~oir/docs /Types_of Experimental_Designs_Handout.doc [Accessed 12 September 2015].
  • Newby, P. (2014). Research Methods for Education (2nd ed) London: Routledge.
  • Nilsson, P. (2007). Different ways in which students handle chance encounters in the explorative setting of a dice game. Educational Studies in Mathematics, 66, 293-315.
  • Pijls, M., Dekker, R., & Van Hout-Wolters, B. (2007). Reconstruction of a collaborative mathematical learning process. Educational Studies in Mathematics, 65, 309-329.
  • Shaughnessy, J. M. (1977). Misconceptions of probability: An experiment with a small-group, activity-based, model building approach to introductory probability at the college level. Educational Studies in Mathematics, 8, 295-316.
  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions.
  • Steffe, L.P. and Weigel, H.: 1994, ‘Cognitive Play and Mathematical Learning in Computer Microworlds’, Educational Studies in Mathematics 26, 111–134.
  • Tan, C. K., & Tan, C. P. (2015). Effects of the handheld technology instructional approach on performances of students of different achievement levels. Computers & Education, 82, 306-314.
  • Tatsis, K., Kafoussi, S., & Skoumpourdi, C. (2008). Kindergarten children discussing the fairness of probabilistic games: the creation of a primary discursive community. Early Chilhood Education Journal, 36, 221-226.
  • Wood, T., Cobb, P., & Yackel, E. (1991). Change in teaching mathematics: A case study. American Educational Research Journal, 28(3), 587 - 616.

The Role of Computer-Assisted Instruction in the Teaching of Probability

Year 2018, Volume: 33 Issue: 3, 705 - 722, 31.07.2018

Abstract

This study aimed to analyze the role of
computer-assisted instruction (CAI) on students’ achievement concerning the
subject of ‘probability’. The experimental pre-and post-test with control group
research design was carried out with 48 seventh grade students by conducting The
Probability Achievement Test (PAT) to all groups. Data were analyzed by
employing an analysis of covariance (ANCOVA) on post-test scores with a
pre-test as the covariate and by calculating effect size values. The results
revealed that the CAI was more effective in helping the students develop the
probability concepts than traditional instruction (TI). Specifically, this
study highlights that the CAI tasks that designed for teaching probability were
powerful and useful for students to enhance their understanding of important
concepts of mathematics and might be used as a new and better way of teaching
probability.

References

  • Antoch, J., Cihák, M., & Pelzla, G. F. (2007). Teaching probability at secondary schools using computers. 56th Session of the ISI.
  • Baker, M., & Chick, H. L. (2007). Making the most of chance. Australian Primary Mathematics Classroom, 12(1), 8-13.
  • Batanero, C., & Serrano, L. (1999). The meaning of randomness for secondary school students. Journal for Research in Mathematics Education, 30(5), 558-567.
  • Best, J.& Kahn, J. (1989). Research In Education, Sixth Edition, Needham Heigts, Massachusetts.
  • Borg, W. (1987). Applying Educational Research, A Practical Guide For Teachers. Second Edition, Logman Inc., New York & London.
  • Bulut, S. (2001). Matematik öğretmen adaylarının olasılık performanslarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 20, 33-39.
  • Chai, C. S., & Tan, S. C. (2009). Professional development of teachers for computer-supported collaborative learning: A knowledge-building approach. Teachers College Record, 111(5), 1296-1327.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Auflage). Hillsdale, NJ: Erlbaum
  • Dede, Y. (2011).Mathematics Education Values Questionnaire for Turkish Preservice Mathematics Teachers: Design, Validation, and Results. International Journal of Science and Mathematics Education, 9(3), 603-626.
  • Dekker, R. (1994). Graphs, small groups and the process of level raising, In A. Antibi (Ed.), Representations Graphique et Symbolique de la maternelle al Universite, Tome 1, Universite Paul Sabatier, Toulouse, 184-189.
  • Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51, 939-954.
  • Denscombe, M. (2010). The Good Research Guide for Small-scale Social Research Projects, 4th ed., Open University Press, McGraw-Hill, Glasgow.
  • Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. J. (2007). Students’ experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23(1), 496-514.
  • Dölen, E. (2005). Salih Zeki ve Darülfünun. Osmanlı Bilimi Araştırmaları, 7(1), 123-135.
  • English, L.D. (1993). Children’s strategies for solving two-and three-stage combinatorial problems. Journal for Research in Mathematics Education, 24(3), 255-273.
  • Fast, G. R. (1997). Using Analogies to overcome student teachers’ probability misconceptions. Journal of Mathematical Behavior, 16(4), 325-344.
  • Field, A. (2002). Discovering Statistics Using SPSS. Sage Publications Ltd., UK: London.
  • Fırat, S. (2011). Bilgisayar destekli eğitsel oyunlarla gerçekleştirilen matematik öğretiminin kavramsal öğrenmeye etkisi (Master's thesis, Adıyaman Üniversitesi).
  • Fırat, S., Gürbüz, R., & Doğan, M. F. (2016). Öğrencilerin Bilgisayar Destekli Argümantasyon Ortaminda Olasiliksal Tahminlerinin Incelenmesi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(3), 906-944.
  • Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children, D. Reidel Publishing Company.
  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal of Research in Science Teaching, 28(1), 96-105.
  • Fischbein, E., Nello, M.S., & Marino, M.S. (1991). Factors affecting probabilistic judgements in children and adolescents. Educational Studies in Mathematics, 22, 523-549.
  • González, J. A., Jover, L., Cobo, E., & Muñoz, P. (2010). A web-based learning tool improves student performance in statistics: A randomized masked trial. Computers & Education, 55(2), 704-713.
  • Gravetter, F.J.,&Forzano, L.B. (2008). Research Methods for the Behavioral Sciences, Cengage, Thousand Oaks, CA.
  • Gürbüz, R. (2006). Olasılık kavramlarının öğretimi için örnek çalışma yapraklarının geliştirilmesi. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 31(1), 111-123.
  • Gürbüz, R. (2007). Bilgisayar destekli öğretimin öğrencilerin kavramsal gelişimlerine etkisi: Olasılık örneği. Eurasian Journal of Educational Research, 28, 75-87.
  • Gürbüz, R. (2010). The Effect of Activity Based Instruction on Conceptual Development of Seventh Grade Students in Probability. International Journal of Mathematical Education in Science and Technology, 41(6), 743-767.
  • Gürbüz, R., & Birgin, O. (2012). The effect of computer-assisted teaching on remedying misconceptions: The case of the subject “probability”. Computers & Education, 58(3), 931-941.
  • Gürbüz, R. ve Erdem, E. (2014). Matematiksel ve Olasılıksal Muhakeme Arasındaki İlişkinin İncelenmesi: 7. Sınıf Örneği, Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16, 205-230.
  • Jones, G.A., Langrall, C.W., Thornton, C.A., & Timothy Mogill, A. (1997). A framework for assessing and nurturing young children’s thinking in probability. Educational Studies in Mathematics, 32, 101-125.
  • Kazıma, M. (2006). Malawian students’ meanings for probability vocabulary. Educational Studies in Mathematics, 64, 169-189.
  • Kim, H. S., Kil, H. J., & Shin, A. (2014). An analysis of variables affecting the ICT literacy level of Korean elementary school students. Computers & Education, 77, 29-38.
  • Lazakidou, G., & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education, 54, 3-13.
  • Millî Eğitim Bakanlığı (MEB) (2009). İlköğretim Matematik Dersi 6-8. Sınıflar Öğretim Programı ve Kılavuzu, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Millî Eğitim Bakanlığı (MEB) (2009). İlköğretim Matematik Dersi 1-5. Sınıflar Öğretim Programı ve Kılavuzu, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Moorhead, C. (2015). Experimental Designs. 1st ed. [ebook] New Hampshire: University of New Hampshire, pp.1-2. Available at: http://www.dartmouth.edu/~oir/docs /Types_of Experimental_Designs_Handout.doc [Accessed 12 September 2015].
  • Newby, P. (2014). Research Methods for Education (2nd ed) London: Routledge.
  • Nilsson, P. (2007). Different ways in which students handle chance encounters in the explorative setting of a dice game. Educational Studies in Mathematics, 66, 293-315.
  • Pijls, M., Dekker, R., & Van Hout-Wolters, B. (2007). Reconstruction of a collaborative mathematical learning process. Educational Studies in Mathematics, 65, 309-329.
  • Shaughnessy, J. M. (1977). Misconceptions of probability: An experiment with a small-group, activity-based, model building approach to introductory probability at the college level. Educational Studies in Mathematics, 8, 295-316.
  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions.
  • Steffe, L.P. and Weigel, H.: 1994, ‘Cognitive Play and Mathematical Learning in Computer Microworlds’, Educational Studies in Mathematics 26, 111–134.
  • Tan, C. K., & Tan, C. P. (2015). Effects of the handheld technology instructional approach on performances of students of different achievement levels. Computers & Education, 82, 306-314.
  • Tatsis, K., Kafoussi, S., & Skoumpourdi, C. (2008). Kindergarten children discussing the fairness of probabilistic games: the creation of a primary discursive community. Early Chilhood Education Journal, 36, 221-226.
  • Wood, T., Cobb, P., & Yackel, E. (1991). Change in teaching mathematics: A case study. American Educational Research Journal, 28(3), 587 - 616.
There are 45 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Ramazan Gürbüz 0000-0002-2412-5882

Yüksel Dede 0000-0001-7634-4908

Muhammed Fatih Doğan This is me

Publication Date July 31, 2018
Published in Issue Year 2018 Volume: 33 Issue: 3

Cite

APA Gürbüz, R., Dede, Y., & Doğan, M. F. (2018). The Role of Computer-Assisted Instruction in the Teaching of Probability. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(3), 705-722.