Review
BibTex RIS Cite

Gıda atıklarının bakteriyel selüloz üretiminde kullanımı

Year 2023, Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4, 737 - 749, 05.01.2024
https://doi.org/10.20289/zfdergi.1350359

Abstract

Selüloz, bitki dokularının hücre duvarında bulunan ve endüstrinin birçok alanında yaygın olarak kullanılan bir polimer olarak tanımlanmaktadır. Ancak son zamanlarda ormanların yok olma tehlikesiyle karşı karşıya kalması araştırmacıları selüloz üretimi için odun yerine alternatif kaynaklar bulmaya yönlendirmiştir. Bu nedenle literatür çalışmaları selüloz üretebildikleri bilinen Acetobacter, Gluconobacter, Alcaligenes, vb. gibi belirli bakteri türlerine odaklanmıştır. Bitki kaynaklı ve bakteriyel kaynaklı selülozun benzer yapıya sahip olduğu ifade edilmektedir. Bakteriyel selüloz, üretim amacına ve yöntemine bağlı olarak büyük bir ekonomik ve ticari potansiyele sahiptir ve gıda uygulamalarında genellikle yağ ikame maddesi, reoloji düzenleyici, probiyotik ve enzimler için immobilizasyon materyali, pickering emülsiyonlarının stabilizatörü, gıda kaplamaları ve yeşil ambalaj üretiminde film bileşeni olarak kullanılmaktadır. Son zamanlarda pancar ve şeker kamışı melası, meyve atıkları, süt sanayi atıkları gibi gıda atıklarının üretim girdisi olarak kullanılması ön plana çıkmıştır. Bu nedenle, endüstriyel yan ürünlerin, tarım-orman ve gıda endüstrisi atıklarının karbon kaynağı olarak kullanılması, verimi artırmak ve maliyeti düşürmek gibi önemli avantajlar sağlamaktadır. Bu çalışmada bakteriyel selüloz üretiminde gıda atıklarının kullanımı ve gelecekteki eğilimler ile ilgili bilgiler derlenmiştir

References

  • Agüero, A., D. Lascano, J. Ivorra-Martineza, J. Gomez-Caturlaa, M.P. Arrieta & R. Balart, 2023. Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil. Industrial Crops & Products, 202: 116971. https://doi.org/10.1016/j.indcrop.2023.116971
  • Akintunde, M.O., BC. Adebayo-Tayo, M.M. Ishola, A. Zamani & I.S. Horvath, 2023. Bacterial cellulose production from agricultural residues by two Komagateibacter sp. strains. Bioengineered, 13 (4): 10010-10025. https://doi.org/10.1080/21655979.2022.2062970
  • Akoğlu, A., A.G. Karahan, M.L. Çakmakçı & İ. Çakır, 2010. Bakterı̇yel selülozun özellı̇klerı̇ ve gıda sanayı̇sı̇nde kullanımı. Gıda, 35 (2): 127-134.
  • Algar, I., S.C.M. Fernandes, G. Mondragon, C. Castro, C. Garcia-Astrain, N. Gabilondo, A. Retegi & A. Eceiza, 2015. Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 132 (1): 1-8. https://doi.org/10.1002/app.41237
  • Andriani, D., A.Y. Apriana & M. Karina, 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27: 6747-6766. https://doi.org/10.1007/s10570-020-03273-9
  • Awogbemi, O. & D.V.V. Kallon, 2022. Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6: 100229. https://doi.org/10.1016/j.cscee.2022.100229
  • Azeredo, H.M.C., H. Barud, C.S. Farinas, V.M. Vasconcellos & A.M. Claro, 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3: 1-14. https://doi.org/10.3389/fsufs.2019.00007
  • Azeredo, H.M.C., M.F. Rosa & L.H.C. Mattoso, 2017. Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97: 664-671. http://dx.doi.org/10.1016/j.indcrop.2016.03.013
  • Azmi, S.N.N.S., Z.A. Samsu, A.S.F.M. Asnawi, H. Ariffind & S.S.S. Abdullah, 2023.The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5: 100327. https://doi.org/10.1016/j.carpta.2023.100327
  • Bandyopadhyay, S., N. Saha, U.V. Brodnjak & P. Saha, 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Materials Research Express, 5 (11): 115405. https://doi.org/10.1088/2053-1591/aadb01
  • Bharimalla, A.K., S.P. Deshmukh, N. Vigneshwaran, P.G. Patil & V. Prasad, 2017. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polymer-Plastics Technology and Engineering, 56 (8): 805-823. https://doi.org/10.1080/03602559.2016.1233281
  • Blasi, A., A. Verardi, C.G. Lopresto, S. Siciliano & P. Sangiorgio, 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8 (61): 1-46. https://doi.org/10.3390/recycling8040061
  • Bozdag, G., O. Pinar, O. Gündüz & D. Kazan, 2021. Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602. Biomass Conversion & Biorefinery, 13 (9): 7875-7886. https://doi.org/10.1007/s13399-021-01643-2
  • Cacicedo, M.L., M.C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas & G.R. Castro, 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213: 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071
  • Çakar, F., A. Katı, I. Özer, D.D. Demirbağ, F. Şahin & A.Ö. Aytekin, 2014. Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92: 35-40. http://dx.doi.org/10.1016/j.bej.2014.07.002
  • Çakmakçı M.L., A.G. Karahan, İ. Çakır, A. Gündoğdu & A. Akoğlu, 2008. Selüloz Üretiminde Kullanılacak Mikro- Organizmaların Izolasyonu, Moleküler Tanısı Ve Mikrobiyel Selülozun Gıda Sanayinde Kullanım Olanaklarının Araştırılması. TÜBİTAK TOVAG Proje Raporu, Proje No: 105O156, 98 s.
  • Caldeira, C., V. Laurentiis, S. Corrado, F. Holsteijn & S. Sala, 2019. Quantification of food waste per product group along the food supply chain in the european union: A mass flow analysis. Resources, Conservation & Recycling, 149: 479-488. https://doi.org/10.1016/j.resconrec.2019.06.011
  • Castro, C., R. Zuluaga, J. Putaux, G. Caro, I. Mondragon & P. Ganan, 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84, 96-102. https://doi.org/10.1016/j.carbpol.2010.10.072
  • Cazon, P. & M. Vazquez, 2021. Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids, 113: 106530. https://doi.org/10.1016/j.foodhyd.2020.106530
  • Costa, A.F.S., F.C.G. Almeida, G.M. Vinhas & L.A. Sarubbo, 2017. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8: 1-12. https://doi.org/10.3389/fmicb.2017.02027
  • Efthymioua, M., E. Tsoukoa, C. Paterakia, A. Papagiannopoulos, P. Tzamalis, S. Pispas, K. Bethanis, I. Mantala & A. Koutinas, 2022. Property evaluation of bacterial cellulose nanostructures produced from confectionery wastes. Biochemical Engineering Journal, 186: 108575. https://doi.org/10.1016/j.bej.2022.108575
  • El-Bestawy, E., A.S. Eltaweil & N.S. Khallaf, 2023. Effective production of bacterial cellulose using acidic dairy industry by-products and agro wastes. Sustainable Chemistry and Pharmacy, 33: 101064. https://doi.org/10.1016/j.scp.2023.101064
  • El-Gendi, H., T.H. Taha, J.B. Ray & A.K. Saleh, 2023. Recent advances in bacterial cellulose.: a low-cost effective production media, optimization strategies and applications. Cellulose, 29: 7495-7533. https://doi.org/10.1007/s10570-022-04697-1
  • Esa, F., S.M. Tasirin & N.A. Rahman, 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2: 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • FAO, 2019. The state of Food and Agriculture 2019: Moving forward on food loss and waste reduction. (Web page: https://www.fao.org/3/ca6030en/ca6030en.pdf) (Date accessed: August 2023).
  • Ferrer, A., L. Pal & M. Hubbe, 2017. Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 95: 574-582. http://dx.doi.org/10.1016/j.indcrop.2016.11.012
  • Filippi, K., H. Papapostolou, M. Alexandri, A. Vlysidis, E.D. Myrtsi, D. Ladakis, C. Pateraki, S.A. Haroutounian & A. Koutinas, 2022. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresource Technology, 343: 125989. https://doi.org/10.1016/j.biortech.2021.125989
  • Ghozali, M., Y. Meliana & M. Chalid, 2021. Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44: 2131-2134. https://doi.org/10.1016/j.matpr.2020.12.274
  • Gorgieva, S., U. Jancic, E. Cepec & J. Trcek, 2023. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244: 125368. https://doi.org/10.1016/j.ijbiomac.2023.125368
  • Guimaraes, D.T., M. Oliveira Barros, R. Araujo e Silva, S.M.F. Silva, J.S. Almeida, M. Freitas Rosa, L.R.B. Gonçalves & A.I.S. Brigida, 2023. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. International Journal of Biological Macromolecules, 242: 124405. https://doi.org/10.1016/j.ijbiomac.2023.124405
  • Güzel, M. & Ö. Akpınar, 2018. Bakteriyel selülozların üretimi ve özellikleri ile gıda ve gıda dışı uygulamalarda kullanımı. Akademik Gıda, 16 (2): 241-251. https://doi.org/10.24323/akademik-gida.449633
  • Hasanin, M.S., M. Abdelraof, A.H. Hashem & H. El Saied, 2023. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22 (24): 1-12. https://doi.org/10.1186/s12934-023-02031-3
  • Hestrin, S. & M. Schramm, 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journals, 58 (2): 345-352. https://doi.org/10.1042/bj0580345
  • Heydorn, R.L., D. Lammers, M. Gottschling & K. Dohnt, 2023. Effect of food industry by‑products on bacterial cellulose production and its structural properties. Cellulose, 30: 4159-4179. https://doi.org/10.1007/s10570-023-05097-9
  • Ishihara M., M. Matsunaga, N. Hayashi & V. Tisler, 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme &Microbial Technology, 31 (7): 986-991. https://doi.org/10.1016/S0141-0229(02)00215-6
  • Jang, E.J., B. Padhan, M. Patel, J.K. Pandey, B. Xu & R. Patelf, 2023. Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control, 153: 109902. https://doi.org/10.1016/j.foodcont.2023.109902
  • Karanicola, P., M. Patsalou, P. Stergiou, A. Kavallieratou, N. Evripidou, P., Christou, G., Panagiotou, C., Damianou, E.M. Papamichael & M. Koutinas, 2021. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. Bioresource Technology, 342: 126010. https://doi.org/10.1016/j.biortech.2021.126010
  • Kaur, M., A.K. Singh & A. Singh, 2023. Bioconversion of food industry waste to value added products: Current technological trends and prospects. Food Bioscience, 55: 102935. https://doi.org/10.1016/j.fbio.2023.102935
  • Khan, S.B. & T. Kamal, 2022. Bacterial Cellulose Synthesis, Production, and Applications (1st edition). CRC Press, Boca Raton, FL, 228 pp.
  • Lahiri, A., S. Daniela, R., Kanthapazhamb, R., Vanarajc, A. Thambiduraia & L.S. Petera, 2023. A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, 10: 100266. https://doi.org/10.1016/j.hazadv.2023.100266
  • Li, Z., F. Azi, Z. Ge, Y. Liu, X. Yin & M. Dong, 2021. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis. International Journal of Biological Macromolecules, 191: 211-221. https://doi.org/10.1016/j.ijbiomac.2021.09.077
  • Li, Z., L. Wang, J. Hua, S. Jia, J. Zhang & H. Liu, 2015. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120: 115-119. https://doi.org/10.1016/j.carbpol.2014.11.061
  • Lin, D., P. Lopez-Sanchez, R. Li & Z. Li, 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology 151: 113-119. http://dx.doi.org/10.1016/j.biortech.2013.10.052
  • Lin, D., Z. Liu, R. Shen, S. Chen & X. Yang, 2020. Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158: 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230
  • Lin, S.P., I. L. Calvar, J. F. Catchmark, J.R. Liu, A. Demirci & K.C. Cheng, 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20: 2191-2219. https://doi.org/10.1007/s10570-013-9994-3
  • Mishra, R.K., A. Sabu & S.K. Tiwari, 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22 (8): 949-978. https://doi.org/10.1016/j.jscs.2018.02.005
  • Mohammadkazemi, F., M. Azin & A. Ashori, 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117: 518-523. http://dx.doi.org/10.1016/j.carbpol.2014.10.008
  • Mou, J., Z. Qin, Y. Yang, S. Liu, W. Yan, L. Zheng, Y. Miao, H. Li, P. Fickers, C.S.K. Lin & X. Wang, 2023. Navigating practical applications of food waste valorisation based on the effects of food waste origins and storage conditions. Chemical Engineering Journal, 468: 143625. https://doi.org/10.1016/j.cej.2023.143625
  • Navya, P.V., V. Gayathrib, D. Samanta & S. Sampatha, 2022. Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules, 220: 435-461. https://doi.org/10.1016/j.ijbiomac.2022.08.056
  • Neelima, S., S. Sreejith, S. Shajahan, A. Raj, L. Vidya, V.M. Aparna, E.K. Radhakrishnan & C. Sudarsanakumar, 2023. Highly crystalline bacterial cellulose production by Novacetimonas hansenii strain isolated from rotten fruit. Materials Letters, 333: 133622. https://doi.org/10.1016/j.matlet.2022.133622
  • Öz, Y.E. & M. Kalender, 2023. A novel static cultivation of bacterial cellulose production from sugar beet molasses: Series static culture (SSC) system. International Journal of Biological Macromolecules, 225: 1306-1314. https://doi.org/10.1016/j.ijbiomac.2022.11.190
  • Poyrazoğlu Çoban, E. & H.H. Bıyık, 2008. Asetik asit bakterilerinden elde edilen alternatif selüloz. Elektronik Mikrobiyoloji Dergisi, 6 (2): 19-26.
  • Revin, V., E. Liyaskina, M. Nazarkina, A. Bogatyreva & M. Shchankin, 2018. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49S: 151-159. https://doi.org/10.1016/j.bjm.2017.12.012
  • Saleh, A.K., H. El-Gendi, E.M. El-Fakharany, M.E. Owda, M.A. Awad & E.A. Kamoun, 2022. Exploitation of cantaloupe peels for bacterial cellulose production and functionalization with green synthesized Copper oxide nanoparticles for diverse biological applications. Scientific Reports, 12: 19241.
  • Seberini, A., 2020. “Economic, social and environmental world impacts of food waste on society and zero waste as a global approach to their elimination”. The 19th International Scientific Conference Globalization and its Socio-Economic Consequences 2019 - Sustainability in the Global-Knowledge EconomySHS Web of Conferences, (October 9-10, Rajecke Teblice) papers. SHS Web of Conferences, Volume: 74, 03010. https://doi.org/10.1051/shsconf/20207403010
  • Shi, Z., Y. Zhang, G.O. Phillips & G. Yang, 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35: 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012
  • Singhania, R.R., A.K. Patel, Y. Tseng, V. Kumar, C. Chen, D. Haldar, J.K. Saini & C. Dong, 2022. Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 344: 126343.
  • Taokaew, S., N. Nakson, J. Thienchaimongkol & T. Kobayashi, 2023. Enhanced production of fibrous bacterial cellulose in Gluconacetobacter xylinus culture medium containing modified protein of okara waste. Journal of Bioscience and Bioengineering, 135 (1): 71-78. https://doi.org/10.1016/j.jbiosc.2022.10.007
  • Tarım ve Orman Bakanlığı, 2022. Çöpe atılan 18 milyon ton gıda artığı hayvan yemine dönüşecek. (Web page: https://www.tarimorman.gov.tr/Haber/5354/Cope-Atilan-18-Milyon-Ton-Gida-Artigi-Hayvan-Yemine-Donusecek) (Date accessed: August, 2023).
  • Thivya, P., S. Akalyab & V.R. Sinija, 2022. A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Applied Food Research, 2 (2): 100161. https://doi.org/10.1016/j.afres.2022.100161
  • Tsang, Y.F., V. Kumar, P. Samadar, Y. Yang, J. Leed, Y.S. Ok, H. Song, K. Kim, E.E. Kwon & Y.J. Jeon, 2019. Production of bioplastic through food waste valorization. Environment International, 127: 625-644. https://doi.org/10.1016/j.envint.2019.03.076
  • Tsouko, E., S. Maina, D. Ladakis, I.K. Kookos & A. Koutinas, 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 160: 944-954. https://doi.org/10.1016/j.renene.2020.05.108
  • Ul-Islam, M., W. Alhajaim, A. Fatima, S. Yasir, T. Kamal, Y. Abbas, S. Khan, A.H. Khan, S. Manan, M.W. Ullah & G. Yang, 2023. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. International Journal of Biological Macromolecules, 231: 123269. https://doi.org/10.1016/j.ijbiomac.2023.123269
  • Usmani, Z., M. Sharma, J. Gaffey, M. Sharma, R.J. Dewhurst, B. Moreau, J. Newbold, W. Clark, V. Kumar Thakur & V. Kumar Gupta, 2022. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology. 346: 126444. https://doi.org/10.1016/j.biortech.2021.126444
  • Varjani, S., W. Yan, A. Priya, F. Xin & C.S.K. Lin, 2023. Management and valorisation strategies for transforming food waste into bio-based products: Roadblocks and the way forward. Current Opinion in Green and Sustainable Chemistry, 41: 100806. https://doi.org/10.1016/j.cogsc.2023.100806
  • Ye, J., S. Zheng, Z. Zhang, F. Yang, K. Ma, Y. Feng, J. Zheng, D. Mao & X. Yang, 2019. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274: 518-524. https://doi.org/10.1016/j.biortech.2018.12.028
  • Zhong, C., 2020. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8: 605374. https://doi.org/10.3389/fbioe.2020.605374

Utilization of food waste in production of bacterial cellulose

Year 2023, Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4, 737 - 749, 05.01.2024
https://doi.org/10.20289/zfdergi.1350359

Abstract

Cellulose is defined as a polymer that exists in the cell walls of plant tissues and is widely used in many industrial fields. However, the recent threat of deforestation has led researchers to find alternative wood sources for cellulose production. For this reason, literature studies have focused on certain types of bacteria known to be capable of producing cellulose, such as Acetobacter, Gluconobacter, Alcaligenes, etc. It is stated that cellulose of plant origin and bacterial origin have a similar structure. Bacterial cellulose possesses a big economic and commercial potential depending on the purpose and the production method and is generally used in food applications as a fat substitute, rheology modifier, immobilization material for probiotics and enzymes, stabilizer of pickering emulsions, component of food coatings and green packaging film. Recently, it has become more prominent to use food waste as production inputs, such as beet and sugar cane molasses, fruit waste, dairy industry waste, etc. So, the utilization of industrial by-products, agro-forestry, and food industry residues as carbon sources has been providing significant advantages, such as increasing yield and reducing cost. The objective of this study was to present a general look related to bacterial cellulose production in combination with the use of food waste and future trends.

References

  • Agüero, A., D. Lascano, J. Ivorra-Martineza, J. Gomez-Caturlaa, M.P. Arrieta & R. Balart, 2023. Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil. Industrial Crops & Products, 202: 116971. https://doi.org/10.1016/j.indcrop.2023.116971
  • Akintunde, M.O., BC. Adebayo-Tayo, M.M. Ishola, A. Zamani & I.S. Horvath, 2023. Bacterial cellulose production from agricultural residues by two Komagateibacter sp. strains. Bioengineered, 13 (4): 10010-10025. https://doi.org/10.1080/21655979.2022.2062970
  • Akoğlu, A., A.G. Karahan, M.L. Çakmakçı & İ. Çakır, 2010. Bakterı̇yel selülozun özellı̇klerı̇ ve gıda sanayı̇sı̇nde kullanımı. Gıda, 35 (2): 127-134.
  • Algar, I., S.C.M. Fernandes, G. Mondragon, C. Castro, C. Garcia-Astrain, N. Gabilondo, A. Retegi & A. Eceiza, 2015. Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 132 (1): 1-8. https://doi.org/10.1002/app.41237
  • Andriani, D., A.Y. Apriana & M. Karina, 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27: 6747-6766. https://doi.org/10.1007/s10570-020-03273-9
  • Awogbemi, O. & D.V.V. Kallon, 2022. Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6: 100229. https://doi.org/10.1016/j.cscee.2022.100229
  • Azeredo, H.M.C., H. Barud, C.S. Farinas, V.M. Vasconcellos & A.M. Claro, 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3: 1-14. https://doi.org/10.3389/fsufs.2019.00007
  • Azeredo, H.M.C., M.F. Rosa & L.H.C. Mattoso, 2017. Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97: 664-671. http://dx.doi.org/10.1016/j.indcrop.2016.03.013
  • Azmi, S.N.N.S., Z.A. Samsu, A.S.F.M. Asnawi, H. Ariffind & S.S.S. Abdullah, 2023.The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5: 100327. https://doi.org/10.1016/j.carpta.2023.100327
  • Bandyopadhyay, S., N. Saha, U.V. Brodnjak & P. Saha, 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Materials Research Express, 5 (11): 115405. https://doi.org/10.1088/2053-1591/aadb01
  • Bharimalla, A.K., S.P. Deshmukh, N. Vigneshwaran, P.G. Patil & V. Prasad, 2017. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polymer-Plastics Technology and Engineering, 56 (8): 805-823. https://doi.org/10.1080/03602559.2016.1233281
  • Blasi, A., A. Verardi, C.G. Lopresto, S. Siciliano & P. Sangiorgio, 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8 (61): 1-46. https://doi.org/10.3390/recycling8040061
  • Bozdag, G., O. Pinar, O. Gündüz & D. Kazan, 2021. Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602. Biomass Conversion & Biorefinery, 13 (9): 7875-7886. https://doi.org/10.1007/s13399-021-01643-2
  • Cacicedo, M.L., M.C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas & G.R. Castro, 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213: 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071
  • Çakar, F., A. Katı, I. Özer, D.D. Demirbağ, F. Şahin & A.Ö. Aytekin, 2014. Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92: 35-40. http://dx.doi.org/10.1016/j.bej.2014.07.002
  • Çakmakçı M.L., A.G. Karahan, İ. Çakır, A. Gündoğdu & A. Akoğlu, 2008. Selüloz Üretiminde Kullanılacak Mikro- Organizmaların Izolasyonu, Moleküler Tanısı Ve Mikrobiyel Selülozun Gıda Sanayinde Kullanım Olanaklarının Araştırılması. TÜBİTAK TOVAG Proje Raporu, Proje No: 105O156, 98 s.
  • Caldeira, C., V. Laurentiis, S. Corrado, F. Holsteijn & S. Sala, 2019. Quantification of food waste per product group along the food supply chain in the european union: A mass flow analysis. Resources, Conservation & Recycling, 149: 479-488. https://doi.org/10.1016/j.resconrec.2019.06.011
  • Castro, C., R. Zuluaga, J. Putaux, G. Caro, I. Mondragon & P. Ganan, 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84, 96-102. https://doi.org/10.1016/j.carbpol.2010.10.072
  • Cazon, P. & M. Vazquez, 2021. Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids, 113: 106530. https://doi.org/10.1016/j.foodhyd.2020.106530
  • Costa, A.F.S., F.C.G. Almeida, G.M. Vinhas & L.A. Sarubbo, 2017. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8: 1-12. https://doi.org/10.3389/fmicb.2017.02027
  • Efthymioua, M., E. Tsoukoa, C. Paterakia, A. Papagiannopoulos, P. Tzamalis, S. Pispas, K. Bethanis, I. Mantala & A. Koutinas, 2022. Property evaluation of bacterial cellulose nanostructures produced from confectionery wastes. Biochemical Engineering Journal, 186: 108575. https://doi.org/10.1016/j.bej.2022.108575
  • El-Bestawy, E., A.S. Eltaweil & N.S. Khallaf, 2023. Effective production of bacterial cellulose using acidic dairy industry by-products and agro wastes. Sustainable Chemistry and Pharmacy, 33: 101064. https://doi.org/10.1016/j.scp.2023.101064
  • El-Gendi, H., T.H. Taha, J.B. Ray & A.K. Saleh, 2023. Recent advances in bacterial cellulose.: a low-cost effective production media, optimization strategies and applications. Cellulose, 29: 7495-7533. https://doi.org/10.1007/s10570-022-04697-1
  • Esa, F., S.M. Tasirin & N.A. Rahman, 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2: 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • FAO, 2019. The state of Food and Agriculture 2019: Moving forward on food loss and waste reduction. (Web page: https://www.fao.org/3/ca6030en/ca6030en.pdf) (Date accessed: August 2023).
  • Ferrer, A., L. Pal & M. Hubbe, 2017. Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 95: 574-582. http://dx.doi.org/10.1016/j.indcrop.2016.11.012
  • Filippi, K., H. Papapostolou, M. Alexandri, A. Vlysidis, E.D. Myrtsi, D. Ladakis, C. Pateraki, S.A. Haroutounian & A. Koutinas, 2022. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresource Technology, 343: 125989. https://doi.org/10.1016/j.biortech.2021.125989
  • Ghozali, M., Y. Meliana & M. Chalid, 2021. Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44: 2131-2134. https://doi.org/10.1016/j.matpr.2020.12.274
  • Gorgieva, S., U. Jancic, E. Cepec & J. Trcek, 2023. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244: 125368. https://doi.org/10.1016/j.ijbiomac.2023.125368
  • Guimaraes, D.T., M. Oliveira Barros, R. Araujo e Silva, S.M.F. Silva, J.S. Almeida, M. Freitas Rosa, L.R.B. Gonçalves & A.I.S. Brigida, 2023. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. International Journal of Biological Macromolecules, 242: 124405. https://doi.org/10.1016/j.ijbiomac.2023.124405
  • Güzel, M. & Ö. Akpınar, 2018. Bakteriyel selülozların üretimi ve özellikleri ile gıda ve gıda dışı uygulamalarda kullanımı. Akademik Gıda, 16 (2): 241-251. https://doi.org/10.24323/akademik-gida.449633
  • Hasanin, M.S., M. Abdelraof, A.H. Hashem & H. El Saied, 2023. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22 (24): 1-12. https://doi.org/10.1186/s12934-023-02031-3
  • Hestrin, S. & M. Schramm, 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journals, 58 (2): 345-352. https://doi.org/10.1042/bj0580345
  • Heydorn, R.L., D. Lammers, M. Gottschling & K. Dohnt, 2023. Effect of food industry by‑products on bacterial cellulose production and its structural properties. Cellulose, 30: 4159-4179. https://doi.org/10.1007/s10570-023-05097-9
  • Ishihara M., M. Matsunaga, N. Hayashi & V. Tisler, 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme &Microbial Technology, 31 (7): 986-991. https://doi.org/10.1016/S0141-0229(02)00215-6
  • Jang, E.J., B. Padhan, M. Patel, J.K. Pandey, B. Xu & R. Patelf, 2023. Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control, 153: 109902. https://doi.org/10.1016/j.foodcont.2023.109902
  • Karanicola, P., M. Patsalou, P. Stergiou, A. Kavallieratou, N. Evripidou, P., Christou, G., Panagiotou, C., Damianou, E.M. Papamichael & M. Koutinas, 2021. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. Bioresource Technology, 342: 126010. https://doi.org/10.1016/j.biortech.2021.126010
  • Kaur, M., A.K. Singh & A. Singh, 2023. Bioconversion of food industry waste to value added products: Current technological trends and prospects. Food Bioscience, 55: 102935. https://doi.org/10.1016/j.fbio.2023.102935
  • Khan, S.B. & T. Kamal, 2022. Bacterial Cellulose Synthesis, Production, and Applications (1st edition). CRC Press, Boca Raton, FL, 228 pp.
  • Lahiri, A., S. Daniela, R., Kanthapazhamb, R., Vanarajc, A. Thambiduraia & L.S. Petera, 2023. A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, 10: 100266. https://doi.org/10.1016/j.hazadv.2023.100266
  • Li, Z., F. Azi, Z. Ge, Y. Liu, X. Yin & M. Dong, 2021. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis. International Journal of Biological Macromolecules, 191: 211-221. https://doi.org/10.1016/j.ijbiomac.2021.09.077
  • Li, Z., L. Wang, J. Hua, S. Jia, J. Zhang & H. Liu, 2015. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120: 115-119. https://doi.org/10.1016/j.carbpol.2014.11.061
  • Lin, D., P. Lopez-Sanchez, R. Li & Z. Li, 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology 151: 113-119. http://dx.doi.org/10.1016/j.biortech.2013.10.052
  • Lin, D., Z. Liu, R. Shen, S. Chen & X. Yang, 2020. Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158: 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230
  • Lin, S.P., I. L. Calvar, J. F. Catchmark, J.R. Liu, A. Demirci & K.C. Cheng, 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20: 2191-2219. https://doi.org/10.1007/s10570-013-9994-3
  • Mishra, R.K., A. Sabu & S.K. Tiwari, 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22 (8): 949-978. https://doi.org/10.1016/j.jscs.2018.02.005
  • Mohammadkazemi, F., M. Azin & A. Ashori, 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117: 518-523. http://dx.doi.org/10.1016/j.carbpol.2014.10.008
  • Mou, J., Z. Qin, Y. Yang, S. Liu, W. Yan, L. Zheng, Y. Miao, H. Li, P. Fickers, C.S.K. Lin & X. Wang, 2023. Navigating practical applications of food waste valorisation based on the effects of food waste origins and storage conditions. Chemical Engineering Journal, 468: 143625. https://doi.org/10.1016/j.cej.2023.143625
  • Navya, P.V., V. Gayathrib, D. Samanta & S. Sampatha, 2022. Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules, 220: 435-461. https://doi.org/10.1016/j.ijbiomac.2022.08.056
  • Neelima, S., S. Sreejith, S. Shajahan, A. Raj, L. Vidya, V.M. Aparna, E.K. Radhakrishnan & C. Sudarsanakumar, 2023. Highly crystalline bacterial cellulose production by Novacetimonas hansenii strain isolated from rotten fruit. Materials Letters, 333: 133622. https://doi.org/10.1016/j.matlet.2022.133622
  • Öz, Y.E. & M. Kalender, 2023. A novel static cultivation of bacterial cellulose production from sugar beet molasses: Series static culture (SSC) system. International Journal of Biological Macromolecules, 225: 1306-1314. https://doi.org/10.1016/j.ijbiomac.2022.11.190
  • Poyrazoğlu Çoban, E. & H.H. Bıyık, 2008. Asetik asit bakterilerinden elde edilen alternatif selüloz. Elektronik Mikrobiyoloji Dergisi, 6 (2): 19-26.
  • Revin, V., E. Liyaskina, M. Nazarkina, A. Bogatyreva & M. Shchankin, 2018. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49S: 151-159. https://doi.org/10.1016/j.bjm.2017.12.012
  • Saleh, A.K., H. El-Gendi, E.M. El-Fakharany, M.E. Owda, M.A. Awad & E.A. Kamoun, 2022. Exploitation of cantaloupe peels for bacterial cellulose production and functionalization with green synthesized Copper oxide nanoparticles for diverse biological applications. Scientific Reports, 12: 19241.
  • Seberini, A., 2020. “Economic, social and environmental world impacts of food waste on society and zero waste as a global approach to their elimination”. The 19th International Scientific Conference Globalization and its Socio-Economic Consequences 2019 - Sustainability in the Global-Knowledge EconomySHS Web of Conferences, (October 9-10, Rajecke Teblice) papers. SHS Web of Conferences, Volume: 74, 03010. https://doi.org/10.1051/shsconf/20207403010
  • Shi, Z., Y. Zhang, G.O. Phillips & G. Yang, 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35: 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012
  • Singhania, R.R., A.K. Patel, Y. Tseng, V. Kumar, C. Chen, D. Haldar, J.K. Saini & C. Dong, 2022. Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 344: 126343.
  • Taokaew, S., N. Nakson, J. Thienchaimongkol & T. Kobayashi, 2023. Enhanced production of fibrous bacterial cellulose in Gluconacetobacter xylinus culture medium containing modified protein of okara waste. Journal of Bioscience and Bioengineering, 135 (1): 71-78. https://doi.org/10.1016/j.jbiosc.2022.10.007
  • Tarım ve Orman Bakanlığı, 2022. Çöpe atılan 18 milyon ton gıda artığı hayvan yemine dönüşecek. (Web page: https://www.tarimorman.gov.tr/Haber/5354/Cope-Atilan-18-Milyon-Ton-Gida-Artigi-Hayvan-Yemine-Donusecek) (Date accessed: August, 2023).
  • Thivya, P., S. Akalyab & V.R. Sinija, 2022. A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Applied Food Research, 2 (2): 100161. https://doi.org/10.1016/j.afres.2022.100161
  • Tsang, Y.F., V. Kumar, P. Samadar, Y. Yang, J. Leed, Y.S. Ok, H. Song, K. Kim, E.E. Kwon & Y.J. Jeon, 2019. Production of bioplastic through food waste valorization. Environment International, 127: 625-644. https://doi.org/10.1016/j.envint.2019.03.076
  • Tsouko, E., S. Maina, D. Ladakis, I.K. Kookos & A. Koutinas, 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 160: 944-954. https://doi.org/10.1016/j.renene.2020.05.108
  • Ul-Islam, M., W. Alhajaim, A. Fatima, S. Yasir, T. Kamal, Y. Abbas, S. Khan, A.H. Khan, S. Manan, M.W. Ullah & G. Yang, 2023. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. International Journal of Biological Macromolecules, 231: 123269. https://doi.org/10.1016/j.ijbiomac.2023.123269
  • Usmani, Z., M. Sharma, J. Gaffey, M. Sharma, R.J. Dewhurst, B. Moreau, J. Newbold, W. Clark, V. Kumar Thakur & V. Kumar Gupta, 2022. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology. 346: 126444. https://doi.org/10.1016/j.biortech.2021.126444
  • Varjani, S., W. Yan, A. Priya, F. Xin & C.S.K. Lin, 2023. Management and valorisation strategies for transforming food waste into bio-based products: Roadblocks and the way forward. Current Opinion in Green and Sustainable Chemistry, 41: 100806. https://doi.org/10.1016/j.cogsc.2023.100806
  • Ye, J., S. Zheng, Z. Zhang, F. Yang, K. Ma, Y. Feng, J. Zheng, D. Mao & X. Yang, 2019. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274: 518-524. https://doi.org/10.1016/j.biortech.2018.12.028
  • Zhong, C., 2020. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8: 605374. https://doi.org/10.3389/fbioe.2020.605374
There are 67 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Review
Authors

Pelin Özkaya 0000-0001-6198-8313

Seval Dağbağlı 0000-0001-9465-0116

Müge Uyarcan 0000-0003-1474-672X

Early Pub Date December 28, 2023
Publication Date January 5, 2024
Submission Date August 26, 2023
Acceptance Date December 3, 2023
Published in Issue Year 2023 Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4

Cite

APA Özkaya, P., Dağbağlı, S., & Uyarcan, M. (2024). Utilization of food waste in production of bacterial cellulose. Journal of Agriculture Faculty of Ege University, 60(4), 737-749. https://doi.org/10.20289/zfdergi.1350359

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.