Derleme
BibTex RIS Kaynak Göster

Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler

Yıl 2017, , 426 - 435, 24.12.2017
https://doi.org/10.24323/akademik-gida.370401

Öz

Dünyada yaygın olarak kullanılan pestisitler, tarımsal,
endüstriyel, evsel ve savaş malzemeleri olarak kullanılan kimyasallardır.
Pestisitler pek çok sağlık sorunu ile ilgili olmasına rağmen, bu kirleticilerin
izlenmesi ve tanımlanmasında ciddi bir eksiklik bulunmaktadır. Yüksek
performanslı sıvı kromatografisi, kılcal elektroforez ve kütle spektrometresi
gibi klasik kromatografik yöntemler gıdalardaki pestisit analizlerinde etkili
yöntemlerdir. Bununla birlikte, bu yöntemlerin karmaşık süreçler, zaman alıcı
hazırlık adımları, pahalı ekipman ve uzman personel gereksinimleri açısından
önemli sınırlamaları vardır. Biyosensörler, basitlik, yüksek hassasiyet, kısa
analiz süresi ve düşük analiz maliyeti ve aynı zamanda gerçek zamanlı ölçümlere
uygulanabilirliği nedeniyle pestisitlerin tayini için tercih edilen
cihazlardır. Onbeş yıldan fazla bir süredir, gıda kontrolü ve güvenliği için
pestisit kalıntılarını izlemek için enzim inhibisyonuna dayalı biyosensörler
geliştirilmiştir. İletken polimerler bu pestisit biyosensörlerinin yapımında
yaygın olarak kullanılmaktadır.
Bu
çalışmada pestisit tayini için kullanılan biyosensörler ile ilgili bilgi
verildikten sonra asetilkolin esteraz enziminin inhibisyonuna dayalı iletken
polimer temelli biyosensörler ile ilgili çal
ışmalar derlenmiştir.

Kaynakça

  • [1] Chapalamadugu, S., Chaudhry, G.R., 1992. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reveviews in Biotechnology 12: 357–389.
  • [2] Dikshith, T.S.S., 1991. Pesticides. In: Dikshith, T.S.S. (Ed.), Toxicology of Pesticides in Animals, CRC Press, Boston, pp. 1–39.
  • [3] Pundir, C.K., Chauhan, N., 2012. Acetylcholinesterase inhibition-based biosensors for pesticide detremination: A review. Analytical Chemistry 429: 19-31.
  • [4] Singh, D.K., Agarwal, R.A., 1983. Inhibition kinetics of certain organophosphorus and carbamate pesticides on acetylcholinesterase from the snail Lymnaea acuminata. Toxicology Letters 19: 313–319.
  • [5] Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S.i McNamara, J.O., Williams, S.M., 2001. Neuroscience. The 2nd Edition. Sinauer Associates, Sunderland (MA), USA.
  • [6] Taylor, P., Camp, S., Radić, Z., 2009. Encyclopedia of Neuroscience (Squire, L.R., Editor-in-Chief). Academic Press, Elsevier Inc., pp. 5–7.
  • [7] Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., White, L.E., 2008. Neuroscience. The 4th Edition. Sinauer Associates, Sunderland, MA, USA.
  • [8] Krasinski, A., Radic, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2005. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. Journal of American Chemical Society 127: 6686–6692.
  • [9] Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2004. In situ click chemistry: enzyme inhibitors made to their own specifications. Journal of American Chemical Society 126: 12809–12818.
  • [10] Woster, P.M., 2001. Pharmaceutical Biochemistry, HarperCollins, New York, USA.
  • [11] Lin, G., Lee, Y.R., Liu, Y.C., Wu, Y.G., 2005. Ortho effect for inhibition mechanisms of butyrylcholinesterase by o-substitute phenyl L-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and phenol. Chemical Research in Toxicology 18: 1124–1131.
  • [12] Schulze, H., Muench, S.B., Villatte, F., Schmid, R.D., Bachmann, T.T., 2005. Insecticide detection through protein engineering of Nippostrongylus brasiliensis acetylcholinesterase B, Analitical Chemistry 77: 5823–5830.
  • [13] Andreescu, S., Avramescu, A., Bala, C., Magearu, V., Marty, J.-L., 2002. Detection of organophosphorus insecticides with immobilized acetylcholinesterase: comparative study between two enzyme sensors. Analytical and Bioanalytical Chemistry 374: 39–45.
  • [14] Montesinos, T. Pérez-Munguia, S. Valdez, F. Marty, J.L., 2001. Disposable cholinesterase biosensor for the detection of pesticides in water miscible–organic solvents. Analytica Chimica Acta 431: 231–237.
  • [15] Pogacnik, L., Franko, M., 2003. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosensors and Bioelectronics 18: 1–9.
  • [16] Prodromidis, M.I. Karayannis, M.I., 2002. Enzyme based amperometric biosensors for food analysis. Electroanalysis 14: 241–261.
  • [17] Turner, A.P.F., Karube, I., Wilson, G.S., 1987. Biosensors: Fundamentals and Applications. Oxford University Press, Oxford, p. 770.
  • [18] Clark, L.C.Jr., 1956. Monitor and control of blood tissue O2 tensions. Transactions American Society for Artificial Internal Organs 2: 41–48.
  • [19] Updike, S.J., Hicks, J.P., 1967. The enzyme electrode. Nature 214: 986–988.
  • [20] Clark, L.C.,Jr., Lyons, C., 1962. Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45.
  • [21] Guilbault, G.G., Kramer, D.N., Cannon, P.L.Jr., 1962. Electrochemical determination of organophosphorous compounds. Analytical Chemistry 34(11): 1437-1439.
  • [22] Kitz, R., Wilson, I.B., 1962. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry 237: 3245–3249.
  • [23] Segel, I.H., 1976. How to solve mathematical problems in general biochemistry? In Biochemical Calculation. 2nd Edition. Wiley, New York, pp. 208–223.
  • [24] Amine, A., Arduini, F., Moscone, D., Palleschi, G., 2016. Recent advances inbiosensors based on enzyme inhibition. Biosensors and Bioelectronics 76: 180-194.
  • [25] Diaz, A.F., Kanazawa, K.K., Gardini, G.P., 1979. Electrochemical polymeriation of pyrrole. Journal of the Chemical Society, Chemical Communications 635-636.
  • [26] Saraswathi, R., Gerard, M., Malhotra, B.D., 1999. Characteristics of aqueous polycarbazole batteries. Jourrnal of Applied Polymer Science 74: 145-150.
  • [27] Kawai, T., Kuwabara, T., Wang, S., Yoshino, K., 1990. Secondary battery characteristics of poly(3-alkylthiophene). Japanese Journal of Applied Physics 29: 602-605.
  • [28] Weetall, H.H., Druzhko, A.B., de Lera, A., Alvarez, R., Robertson, B., 2000. Measurement of proton release and uptake by analogs of bacteriorhodopsin. Bioelectrochemistry 51: 27-23.
  • [29] Letheby, H., 1862. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15: 161-163.
  • [30] Natta, G., Mazzanti, G., Corradini P., 1958. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei 25(8): 3.
  • [31] Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J., 1977. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications 578-580.
  • [32] Heinze J., 1991. Electrochemistry of conducting polymers. Synthetic Metals 41-43: 2805-2823.
  • [33] Ivanov, A.N., Lukachova, L.V., Evtugyn, G.A., Karyakina, E.E., Kiseleva, S.G., Budnikov, H.C., Orlov, A.V., Karpacheva, G.P., Karyakin, A.A., 2002. Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochemistry 55: 75–77.
  • [34] Somerset, V.S., Klink, M.J., Baker, P.G.L., Iwuoha, E.I., 2007. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. Journal of Environmental Science and Health Part B 42: 297–304.
  • [35] Viswanathan, S., Radecka, H., Radecki, J., 2009. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosensors and Bioelectronics 24: 2772–2777.
  • [36] Chauhan, N., Narang, J., Pundir, C.S., 2011. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics 29: 82– 88.
  • [37] Ekiz Kanik, F., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2013. An amperometric acetylcholine biosensor based on a conducting polymer. International Journal of Biological Macromolecules 59: 111–118.
  • [38] Kesik, M., Ekiz Kanik, F., Turan, J., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2014. An acetylcholinesterase biosensor based on a conducting polymerusing multiwalled carbon nanotubes for amperometric detection oforganophosphorous pesticides. Sensors and Actuators B 205: 39–49.
  • [39] He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., Zhang, Z., 2017. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2017.11.161.
  • [40] Du, D., Ye, X., Cai, J., Liu, J., Zhang, A., 2010. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics 25: 2503–2508.
  • [41] Dutta, R.R., Puzari, P., 2014. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosensors and Bioelectronics 52: 166–172.
  • [42] Gong, J., Wang, L., Zhang, L., 2009. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosensors and Bioelectronics 24: 2285–2288.
  • [43] Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S., 2012. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chemistry 135: 873–879.
  • [44] Istamboulie, G., Sikora, T., Jubete, E., Ochoteco, E., Marty, J.-L., Noguer, T., 2010. Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82: 957–961.

Acetylcholinesterase Inhibition Based Biosensors Developed by Using Conducting Polymers for Pesticide Analyses

Yıl 2017, , 426 - 435, 24.12.2017
https://doi.org/10.24323/akademik-gida.370401

Öz

Pesticides commonly used
worldwide are chemicals used as agricultural, industrial, domestic and war
materials.
Although
pesticides are very strongly associated with many health problems, there is a
serious lack of monitoring and identification of these pollutants. Conventional
chromatographic methods such as high performance liquid chromatography,
capillary electrophoresis and mass spectrometry are effective methods for
pesticide analysis in foods. However, these methods have considerable
limitations in terms of complex processes, time-consuming preparatory steps,
expensive equipment and expert staff requirements. Biosensors are preferred
devices for the determination of pesticides because of their simplicity, high
sensitivity, short analysis time and low analysis cost, as well as their
applicability to real time measurements. For more than 15 years, biosensors
based on enzyme inhibition have been developed to monitor pesticide residues
for food control and safety. Conductive polymers have been commonly used during
constructions of these pesticide biosensors. In this study, studies on
biosensors used for pesticide analyses were summarized and then studies on acetylcholinesterase
Inhibition based biosensors developed by using conducting polymers for
pesticide analyses were reviewed.

Kaynakça

  • [1] Chapalamadugu, S., Chaudhry, G.R., 1992. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reveviews in Biotechnology 12: 357–389.
  • [2] Dikshith, T.S.S., 1991. Pesticides. In: Dikshith, T.S.S. (Ed.), Toxicology of Pesticides in Animals, CRC Press, Boston, pp. 1–39.
  • [3] Pundir, C.K., Chauhan, N., 2012. Acetylcholinesterase inhibition-based biosensors for pesticide detremination: A review. Analytical Chemistry 429: 19-31.
  • [4] Singh, D.K., Agarwal, R.A., 1983. Inhibition kinetics of certain organophosphorus and carbamate pesticides on acetylcholinesterase from the snail Lymnaea acuminata. Toxicology Letters 19: 313–319.
  • [5] Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S.i McNamara, J.O., Williams, S.M., 2001. Neuroscience. The 2nd Edition. Sinauer Associates, Sunderland (MA), USA.
  • [6] Taylor, P., Camp, S., Radić, Z., 2009. Encyclopedia of Neuroscience (Squire, L.R., Editor-in-Chief). Academic Press, Elsevier Inc., pp. 5–7.
  • [7] Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., White, L.E., 2008. Neuroscience. The 4th Edition. Sinauer Associates, Sunderland, MA, USA.
  • [8] Krasinski, A., Radic, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2005. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. Journal of American Chemical Society 127: 6686–6692.
  • [9] Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2004. In situ click chemistry: enzyme inhibitors made to their own specifications. Journal of American Chemical Society 126: 12809–12818.
  • [10] Woster, P.M., 2001. Pharmaceutical Biochemistry, HarperCollins, New York, USA.
  • [11] Lin, G., Lee, Y.R., Liu, Y.C., Wu, Y.G., 2005. Ortho effect for inhibition mechanisms of butyrylcholinesterase by o-substitute phenyl L-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and phenol. Chemical Research in Toxicology 18: 1124–1131.
  • [12] Schulze, H., Muench, S.B., Villatte, F., Schmid, R.D., Bachmann, T.T., 2005. Insecticide detection through protein engineering of Nippostrongylus brasiliensis acetylcholinesterase B, Analitical Chemistry 77: 5823–5830.
  • [13] Andreescu, S., Avramescu, A., Bala, C., Magearu, V., Marty, J.-L., 2002. Detection of organophosphorus insecticides with immobilized acetylcholinesterase: comparative study between two enzyme sensors. Analytical and Bioanalytical Chemistry 374: 39–45.
  • [14] Montesinos, T. Pérez-Munguia, S. Valdez, F. Marty, J.L., 2001. Disposable cholinesterase biosensor for the detection of pesticides in water miscible–organic solvents. Analytica Chimica Acta 431: 231–237.
  • [15] Pogacnik, L., Franko, M., 2003. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosensors and Bioelectronics 18: 1–9.
  • [16] Prodromidis, M.I. Karayannis, M.I., 2002. Enzyme based amperometric biosensors for food analysis. Electroanalysis 14: 241–261.
  • [17] Turner, A.P.F., Karube, I., Wilson, G.S., 1987. Biosensors: Fundamentals and Applications. Oxford University Press, Oxford, p. 770.
  • [18] Clark, L.C.Jr., 1956. Monitor and control of blood tissue O2 tensions. Transactions American Society for Artificial Internal Organs 2: 41–48.
  • [19] Updike, S.J., Hicks, J.P., 1967. The enzyme electrode. Nature 214: 986–988.
  • [20] Clark, L.C.,Jr., Lyons, C., 1962. Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45.
  • [21] Guilbault, G.G., Kramer, D.N., Cannon, P.L.Jr., 1962. Electrochemical determination of organophosphorous compounds. Analytical Chemistry 34(11): 1437-1439.
  • [22] Kitz, R., Wilson, I.B., 1962. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry 237: 3245–3249.
  • [23] Segel, I.H., 1976. How to solve mathematical problems in general biochemistry? In Biochemical Calculation. 2nd Edition. Wiley, New York, pp. 208–223.
  • [24] Amine, A., Arduini, F., Moscone, D., Palleschi, G., 2016. Recent advances inbiosensors based on enzyme inhibition. Biosensors and Bioelectronics 76: 180-194.
  • [25] Diaz, A.F., Kanazawa, K.K., Gardini, G.P., 1979. Electrochemical polymeriation of pyrrole. Journal of the Chemical Society, Chemical Communications 635-636.
  • [26] Saraswathi, R., Gerard, M., Malhotra, B.D., 1999. Characteristics of aqueous polycarbazole batteries. Jourrnal of Applied Polymer Science 74: 145-150.
  • [27] Kawai, T., Kuwabara, T., Wang, S., Yoshino, K., 1990. Secondary battery characteristics of poly(3-alkylthiophene). Japanese Journal of Applied Physics 29: 602-605.
  • [28] Weetall, H.H., Druzhko, A.B., de Lera, A., Alvarez, R., Robertson, B., 2000. Measurement of proton release and uptake by analogs of bacteriorhodopsin. Bioelectrochemistry 51: 27-23.
  • [29] Letheby, H., 1862. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15: 161-163.
  • [30] Natta, G., Mazzanti, G., Corradini P., 1958. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei 25(8): 3.
  • [31] Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J., 1977. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications 578-580.
  • [32] Heinze J., 1991. Electrochemistry of conducting polymers. Synthetic Metals 41-43: 2805-2823.
  • [33] Ivanov, A.N., Lukachova, L.V., Evtugyn, G.A., Karyakina, E.E., Kiseleva, S.G., Budnikov, H.C., Orlov, A.V., Karpacheva, G.P., Karyakin, A.A., 2002. Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochemistry 55: 75–77.
  • [34] Somerset, V.S., Klink, M.J., Baker, P.G.L., Iwuoha, E.I., 2007. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. Journal of Environmental Science and Health Part B 42: 297–304.
  • [35] Viswanathan, S., Radecka, H., Radecki, J., 2009. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosensors and Bioelectronics 24: 2772–2777.
  • [36] Chauhan, N., Narang, J., Pundir, C.S., 2011. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics 29: 82– 88.
  • [37] Ekiz Kanik, F., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2013. An amperometric acetylcholine biosensor based on a conducting polymer. International Journal of Biological Macromolecules 59: 111–118.
  • [38] Kesik, M., Ekiz Kanik, F., Turan, J., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2014. An acetylcholinesterase biosensor based on a conducting polymerusing multiwalled carbon nanotubes for amperometric detection oforganophosphorous pesticides. Sensors and Actuators B 205: 39–49.
  • [39] He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., Zhang, Z., 2017. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2017.11.161.
  • [40] Du, D., Ye, X., Cai, J., Liu, J., Zhang, A., 2010. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics 25: 2503–2508.
  • [41] Dutta, R.R., Puzari, P., 2014. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosensors and Bioelectronics 52: 166–172.
  • [42] Gong, J., Wang, L., Zhang, L., 2009. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosensors and Bioelectronics 24: 2285–2288.
  • [43] Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S., 2012. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chemistry 135: 873–879.
  • [44] Istamboulie, G., Sikora, T., Jubete, E., Ochoteco, E., Marty, J.-L., Noguer, T., 2010. Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82: 957–961.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Songül Şen Gürsoy 0000-0003-0334-5621

Oğuz Gürsoy 0000-0003-0334-5621

Yayımlanma Tarihi 24 Aralık 2017
Gönderilme Tarihi 7 Mart 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Şen Gürsoy, S., & Gürsoy, O. (2017). Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda, 15(4), 426-435. https://doi.org/10.24323/akademik-gida.370401
AMA Şen Gürsoy S, Gürsoy O. Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda. Aralık 2017;15(4):426-435. doi:10.24323/akademik-gida.370401
Chicago Şen Gürsoy, Songül, ve Oğuz Gürsoy. “Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler”. Akademik Gıda 15, sy. 4 (Aralık 2017): 426-35. https://doi.org/10.24323/akademik-gida.370401.
EndNote Şen Gürsoy S, Gürsoy O (01 Aralık 2017) Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda 15 4 426–435.
IEEE S. Şen Gürsoy ve O. Gürsoy, “Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler”, Akademik Gıda, c. 15, sy. 4, ss. 426–435, 2017, doi: 10.24323/akademik-gida.370401.
ISNAD Şen Gürsoy, Songül - Gürsoy, Oğuz. “Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler”. Akademik Gıda 15/4 (Aralık 2017), 426-435. https://doi.org/10.24323/akademik-gida.370401.
JAMA Şen Gürsoy S, Gürsoy O. Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda. 2017;15:426–435.
MLA Şen Gürsoy, Songül ve Oğuz Gürsoy. “Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler”. Akademik Gıda, c. 15, sy. 4, 2017, ss. 426-35, doi:10.24323/akademik-gida.370401.
Vancouver Şen Gürsoy S, Gürsoy O. Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda. 2017;15(4):426-35.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).