Araştırma Makalesi
BibTex RIS Kaynak Göster

Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates

Yıl 2019, , 444 - 449, 31.12.2019
https://doi.org/10.24323/akademik-gida.667250

Öz

Currently, leafy green salads are often consumed because they are considered as practical and healthy. However, during their preparation, both inadequate washing and contact with non-hygienic surfaces may increase their microbial load. This may cause several health problems for individuals consuming salads. The overuse of antibiotics has led to the emergence of multidrug resistant bacteria, including foodborne pathogens. Biofilm production ability of these pathogenic bacteria makes it difficult to treat infections caused by these pathogens. The aim of this study is to isolate and identify P. fluorescens from leafy green salads collected from different restaurants. A total of 72 isolates were isolated from leafy green salads, and 29 of these isolates were identified by PCR as Pseudomonas and 9 of them identified as P. fluorescens. All P. fluorescens isolates were resistant to ampicillin, amoxicillin, cefuroxime, ceftazidime and ceftriaxone antibiotics. The results of this study showed that additional attention for the hygiene conditions is needed during the preparation and storage stages of leafy green salads.

Destekleyen Kurum

Süleyman Demirel University Scientific Research Projects Management Unit

Proje Numarası

3955-YL1-14

Teşekkür

We would like to thank the Head of Scientific Research Projects Management Unit of Süleyman Demirel University for supporting this study with the project number 3955-YL1-14.

Kaynakça

  • [1] Abadias, M., Usall, J., Anguera, M., Solsona, C., Viñas, I. (2008). Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123(1-2), 121-129.
  • [2] Oliveira, D.R., Leitao, G.G., Santos, S.S., Bizzo, H.R., Lopes, D., Alviano, C.S., Alviano, D.S., Leitao, S.G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
  • [3] Cerna-Cortes, J.F., Leon-Montes, N., Cortes-Cueto, A.L., Salas-Rangel, L.P., Helguera-Repetto, A.C., Lopez-Hernandez, D., Rivera-Gutierrez, S., Fernandez-Rendon, E., Gonzalez-y-Merchand, J.A. (2015). Microbiological quality of ready-to-eat vegetables collected in Mexico City: occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed Research International, 1-9.
  • [4] Gómez-Govea, M., Solís-Soto, L., Heredia, N., García, S., Moreno, G., Tovar, O., Isunza, G. (2012). Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. Journal of Food Agriculture and Environment, 10(1), 152-156.
  • [5] Jung, Y., Jang, H., Matthews, K.R. (2014). Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microbial Biotechnology, 7(6), 517-527.
  • [6] Rajmohan, S., Dodd, C., Waites, W. (2002). Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, 93(2), 205-213.
  • [7] Madi, A., Svinareff, P., Orange, N., Feuilloley, M.G., Connil, N. (2010). Pseudomonas fluorescens alters epithelial permeability and translocates across Caco-2/TC7 intestinal cells. Gut Pathogens, 2(1), 16.
  • [8] Picot, L., Abdelmoula, S.M., Merieau, A., Leroux, P., Cazin, L., Orange, N., Feuilloley, M.G. (2001). Pseudomonas fluorescens as a potential pathogen: adherence to nerve cells. Microbes and Infection, 3(12), 985-995.
  • [9] Benito, N., Mirelis, B., Gálvez, M.L., Vila, M., Lopez-Contreras, J., Cotura, A., Pomar, V., March, F., Navarro, F., Coll, P. (2012). Outbreak of Pseudomonas fluorescens bloodstream infection in a coronary care unit. Journal of Hospital Infection, 82(4), 286-289.
  • [10] Gershman, M.D., Kennedy, D.J., Noble-Wang, J., Kim, C., Gullion, J., Kacica, M., Jensen, B., Pascoe, N., Saiman, L., McHale, J. (2008). Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clinical Infectious Diseases, 47(11), 1372-1379.
  • [11] Gabani, P., Prakash, D., Singh, O.V. (2012). Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles, 16(5), 697-713.
  • [12] Wellington, E.M.H., Boxall, A.B.A., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-Rollings, A.S., Jones, D.L., Lee, N.M., Otten, W., Thomas, C.M., Williams, A.P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infectious Diseases, 13(2), 155-165.
  • [13] Woappi, Y., Gabani, P., Singh, A., Singh, O.V. (2016). Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic- resistant microorganisms. Critical Reviews in Microbiology, 42(1), 17-30.
  • [14] Gorgani, N., Ahlbrand, S., Patterson, A., Pourmand, N. (2009). Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 34(5), 414-418.
  • [15] Spilker, T., Coenye, T., Vandamme, P., LiPuma, J.J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology, 42(5), 2074-2079.
  • [16] Clinical and Laboratory Standards Institute (CLSI) (2009). Performance Standards for Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Informational Supplement.
  • [17] EUCAST (2019). The European Committee on Antimicrobial Susceptibility Testing (Sweden).
  • [18] Matuschek, E., Brown, D.F.J., Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4), 255-266.
  • [19] O'Toole, G.A., Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30(2), 295-304.
  • [20] da Costa, P., Loureiro, L., Matos, A. (2013). Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. International Journal of Environmental Research and Public Health, 10(1), 278-294.
  • [21] Sandberg, K.D., LaPara, T.M. (2016). The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiology Ecology, 92(2), 1-7.
  • [22] Heuer, H., Schmitt, H., Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236-243.
  • [23] Gillings, M.R. (2013). Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4, 4.
  • [24] He, L.-Y., Ying, G.-G., Liu, Y.-S., Su, H.-C., Chen, J., Liu, S.-S., Zhao, J.-L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92, 210-219.
  • [25] Liu, P., Jia, S., He, X., Zhang, X., Ye, L. (2017). Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Chemosphere, 188, 455-464.
  • [26] Wang, J., Ben, W.W., Yang, M., Zhang, Y., Qiang, Z.M. (2016). Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International, 92, 317-323.
  • [27] Xanthopoulos, V., Tzanetakis, N., Litopoulou-Tzanetaki, E. (2010). Occurrence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control, 21(4), 393-398.
  • [28] Handschur, M., Pinar, G., Gallist, B., Lubitz, W., Haslberger, A. (2005). Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing. Food and Chemical Toxicology, 43(11), 1595-1605.
  • [29] Lopez‐Velasco, G., Welbaum, G., Boyer, R., Mane, S., Ponder, M. (2011). Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. Journal of Applied Microbiology, 110(5), 1203-1214.
  • [30] Hunter, P.J., Hand, P., Pink, D., Whipps, J.M., Bending, G.D. (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Applied Environmental Microbiology, 76(24), 8117-8125.
  • [31] Wong, V., Levi, K., Baddal, B., Turton, J., and Boswell, T.C. (2011). Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. Journal of Clinical Microbiology, 49(6), 2093-2096.
  • [32] Godebo, G., Kibru, G., Tassew, H. (2013). Multidrug-resistant bacterial isolates in infected wounds at Jimma University Specialized Hospital, Ethiopia. Annals of Clinical Microbiology and Antimicrobials, 12(1), 17.
  • [33] Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E. (2017). Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hygiene and Infection Control, 1-24.
  • [34] Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332.

Yeşil Salatalardan Pseudomonas fluorescens İzolasyonu ve İzolatların Antibiyotik Duyarlılıkları

Yıl 2019, , 444 - 449, 31.12.2019
https://doi.org/10.24323/akademik-gida.667250

Öz

Günümüzde yeşil salatalar genellikle pratik ve sağlıklı olduklarını düşünerek tüketilmektedir. Ancak salataların hazırlanması sırasında, salata malzemelerinin yetersiz yıkanması ve hijyenik olmayan yüzeylerle teması, salataların mikrobiyal yükünü arttırmaktadır. Bu durum salataları tüketen bireyler için sağlık sorunlarına neden olabilir. Antibiyotiklerin aşırı kullanımı, gıda kaynaklı patojenler dahil olmak üzere çoklu ilaç direncine sahip bakterilerin ortaya çıkmasına neden olmuştur. Bu patojen bakterilerin biyofilm üretme özelliklerinin olması, bu patojenlerin sebep oldukları enfeksiyonların tedavisini zorlaştırmaktadır. Bu çalışmanın amacı, farklı restoranlardan temin edilen yeşil salatalardan P. fluorescens izolasyonu ve tanımlanmasıdır. Yeşil salatalardan toplam 72 izolat izole edilmiş ve bu izolatların 29'u PZR ile Pseudomonas olarak ve 9'u P. fluorescens olarak tanımlanmıştır. Tüm P. fluorescens izolatlarının ampisilin, amoksisilin, sefuroksim, seftazidime ve seftriakson antibiyotiklerine dirençli olduğu bulunmuştur. Bu çalışmanın sonuçları, yeşil salataların hazırlanması ve depolanması sırasında hijyen koşullarına daha fazla dikkat edilmesi gerektiğini göstermektedir.

Proje Numarası

3955-YL1-14

Kaynakça

  • [1] Abadias, M., Usall, J., Anguera, M., Solsona, C., Viñas, I. (2008). Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123(1-2), 121-129.
  • [2] Oliveira, D.R., Leitao, G.G., Santos, S.S., Bizzo, H.R., Lopes, D., Alviano, C.S., Alviano, D.S., Leitao, S.G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
  • [3] Cerna-Cortes, J.F., Leon-Montes, N., Cortes-Cueto, A.L., Salas-Rangel, L.P., Helguera-Repetto, A.C., Lopez-Hernandez, D., Rivera-Gutierrez, S., Fernandez-Rendon, E., Gonzalez-y-Merchand, J.A. (2015). Microbiological quality of ready-to-eat vegetables collected in Mexico City: occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed Research International, 1-9.
  • [4] Gómez-Govea, M., Solís-Soto, L., Heredia, N., García, S., Moreno, G., Tovar, O., Isunza, G. (2012). Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. Journal of Food Agriculture and Environment, 10(1), 152-156.
  • [5] Jung, Y., Jang, H., Matthews, K.R. (2014). Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microbial Biotechnology, 7(6), 517-527.
  • [6] Rajmohan, S., Dodd, C., Waites, W. (2002). Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, 93(2), 205-213.
  • [7] Madi, A., Svinareff, P., Orange, N., Feuilloley, M.G., Connil, N. (2010). Pseudomonas fluorescens alters epithelial permeability and translocates across Caco-2/TC7 intestinal cells. Gut Pathogens, 2(1), 16.
  • [8] Picot, L., Abdelmoula, S.M., Merieau, A., Leroux, P., Cazin, L., Orange, N., Feuilloley, M.G. (2001). Pseudomonas fluorescens as a potential pathogen: adherence to nerve cells. Microbes and Infection, 3(12), 985-995.
  • [9] Benito, N., Mirelis, B., Gálvez, M.L., Vila, M., Lopez-Contreras, J., Cotura, A., Pomar, V., March, F., Navarro, F., Coll, P. (2012). Outbreak of Pseudomonas fluorescens bloodstream infection in a coronary care unit. Journal of Hospital Infection, 82(4), 286-289.
  • [10] Gershman, M.D., Kennedy, D.J., Noble-Wang, J., Kim, C., Gullion, J., Kacica, M., Jensen, B., Pascoe, N., Saiman, L., McHale, J. (2008). Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clinical Infectious Diseases, 47(11), 1372-1379.
  • [11] Gabani, P., Prakash, D., Singh, O.V. (2012). Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles, 16(5), 697-713.
  • [12] Wellington, E.M.H., Boxall, A.B.A., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-Rollings, A.S., Jones, D.L., Lee, N.M., Otten, W., Thomas, C.M., Williams, A.P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infectious Diseases, 13(2), 155-165.
  • [13] Woappi, Y., Gabani, P., Singh, A., Singh, O.V. (2016). Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic- resistant microorganisms. Critical Reviews in Microbiology, 42(1), 17-30.
  • [14] Gorgani, N., Ahlbrand, S., Patterson, A., Pourmand, N. (2009). Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 34(5), 414-418.
  • [15] Spilker, T., Coenye, T., Vandamme, P., LiPuma, J.J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology, 42(5), 2074-2079.
  • [16] Clinical and Laboratory Standards Institute (CLSI) (2009). Performance Standards for Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Informational Supplement.
  • [17] EUCAST (2019). The European Committee on Antimicrobial Susceptibility Testing (Sweden).
  • [18] Matuschek, E., Brown, D.F.J., Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4), 255-266.
  • [19] O'Toole, G.A., Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30(2), 295-304.
  • [20] da Costa, P., Loureiro, L., Matos, A. (2013). Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. International Journal of Environmental Research and Public Health, 10(1), 278-294.
  • [21] Sandberg, K.D., LaPara, T.M. (2016). The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiology Ecology, 92(2), 1-7.
  • [22] Heuer, H., Schmitt, H., Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236-243.
  • [23] Gillings, M.R. (2013). Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4, 4.
  • [24] He, L.-Y., Ying, G.-G., Liu, Y.-S., Su, H.-C., Chen, J., Liu, S.-S., Zhao, J.-L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environment International, 92, 210-219.
  • [25] Liu, P., Jia, S., He, X., Zhang, X., Ye, L. (2017). Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Chemosphere, 188, 455-464.
  • [26] Wang, J., Ben, W.W., Yang, M., Zhang, Y., Qiang, Z.M. (2016). Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International, 92, 317-323.
  • [27] Xanthopoulos, V., Tzanetakis, N., Litopoulou-Tzanetaki, E. (2010). Occurrence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control, 21(4), 393-398.
  • [28] Handschur, M., Pinar, G., Gallist, B., Lubitz, W., Haslberger, A. (2005). Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing. Food and Chemical Toxicology, 43(11), 1595-1605.
  • [29] Lopez‐Velasco, G., Welbaum, G., Boyer, R., Mane, S., Ponder, M. (2011). Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. Journal of Applied Microbiology, 110(5), 1203-1214.
  • [30] Hunter, P.J., Hand, P., Pink, D., Whipps, J.M., Bending, G.D. (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Applied Environmental Microbiology, 76(24), 8117-8125.
  • [31] Wong, V., Levi, K., Baddal, B., Turton, J., and Boswell, T.C. (2011). Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. Journal of Clinical Microbiology, 49(6), 2093-2096.
  • [32] Godebo, G., Kibru, G., Tassew, H. (2013). Multidrug-resistant bacterial isolates in infected wounds at Jimma University Specialized Hospital, Ethiopia. Annals of Clinical Microbiology and Antimicrobials, 12(1), 17.
  • [33] Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E. (2017). Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hygiene and Infection Control, 1-24.
  • [34] Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Dilek Düyüncü Bu kişi benim 0000-0001-7739-9230

Seyhan Ulusoy 0000-0002-6559-1177

Proje Numarası 3955-YL1-14
Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 19 Kasım 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Düyüncü, D., & Ulusoy, S. (2019). Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates. Akademik Gıda, 17(4), 444-449. https://doi.org/10.24323/akademik-gida.667250
AMA Düyüncü D, Ulusoy S. Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates. Akademik Gıda. Aralık 2019;17(4):444-449. doi:10.24323/akademik-gida.667250
Chicago Düyüncü, Dilek, ve Seyhan Ulusoy. “Pseudomonas Fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates”. Akademik Gıda 17, sy. 4 (Aralık 2019): 444-49. https://doi.org/10.24323/akademik-gida.667250.
EndNote Düyüncü D, Ulusoy S (01 Aralık 2019) Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates. Akademik Gıda 17 4 444–449.
IEEE D. Düyüncü ve S. Ulusoy, “Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates”, Akademik Gıda, c. 17, sy. 4, ss. 444–449, 2019, doi: 10.24323/akademik-gida.667250.
ISNAD Düyüncü, Dilek - Ulusoy, Seyhan. “Pseudomonas Fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates”. Akademik Gıda 17/4 (Aralık 2019), 444-449. https://doi.org/10.24323/akademik-gida.667250.
JAMA Düyüncü D, Ulusoy S. Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates. Akademik Gıda. 2019;17:444–449.
MLA Düyüncü, Dilek ve Seyhan Ulusoy. “Pseudomonas Fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates”. Akademik Gıda, c. 17, sy. 4, 2019, ss. 444-9, doi:10.24323/akademik-gida.667250.
Vancouver Düyüncü D, Ulusoy S. Pseudomonas fluorescens Isolation from Green Salads and Antibiotic Susceptibilities of Isolates. Akademik Gıda. 2019;17(4):444-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).