Derleme
BibTex RIS Kaynak Göster

Bound Forms of Phenolic Compounds and their Bioavailability

Yıl 2019, , 526 - 537, 31.12.2019
https://doi.org/10.24323/akademik-gida.667270

Öz

In this review, the properties of bound (unextractable) phenolic compound forms in food structure, protein-phenolic and carbohydrate-phenolic relationships, metabolism and bioavailability in digestion are discussed. Phenolic compounds in foods are determined by conventional methods using organic solvents. However, bound forms which remain in the extraction residue and constitute a significant portion of the total phenolic compounds are ignored. Therefore, the total phenolic content of foods, especially those with high phenolic content, has not been accurately determined in the past. Bound phenolic compounds which account for 20-60% of the total phenolic content of fruit, vegetables, cereals and legumes are now taken into account in determining the phenolic composition. Bound phenolics can be covalently attached to the cell wall by structures such as cellulose, pectin, protein by ester, ether or acetal bonds. Due to their aromatic rings and hydroxyl groups, phenolic compounds have the ability to bind to the cell wall and to structures such as protein, carbohydrate, lipid by hydrophobic and hydrophilic interactions, hydrogen and covalent bonds. There are many factors in the interaction of phenolics with macromolecules such as molecular weight, degree of polymerization, and number of aromatic groups. This complex is known to have many positive effects on human health. The bioavailability of phenolic compounds in foods depends on their release, absorption and passage into the bloodstream during digestive or intestinal fermentations. In particular, polyphenols in certain foods bind to macromolecules such as proteins, carbohydrates, lipids in the cell wall structure and greatly affect the bioavailability of the gastrointestinal tract. Due to the difficult digestion of cell wall materials, bound phenolic compounds can reach the colon without alteration in the gastrointestinal tract.

Kaynakça

  • [1] Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429-452.
  • [2] Shahidi, F., Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216.
  • [3] Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.
  • [4] Albishi, T., John, J.A., Al-Khalifa, A.S., Shahidi, F. (2013). Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties. Journal of Functional Foods, 5(2), 930-939.
  • [5] Kaur, S., Mondal, P. (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology & Experimentation, 1(1), 00005.
  • [6] Zhang, H., Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
  • [7] Zhang, X.L., Guo, Y.S., Wang, C.H., Li, G. Q., Xu, J.J., Chung, H.Y., Ye, W.C., Li, Y.L., Wang, G.C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306.
  • [8] Thangapazham, R.L., Sharma, A., Maheshwari, R.K. (2006). Multiple molecular targets in cancer chemoprevention by curcumin. The AAPS Journal, 8(3), E443.
  • [9] Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., Mattila, P., Jula, A. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. The American Journal of Clinical Nutrition, 87(2), 323-331.
  • [10] Kris-Etherton, P.M., Lichtenstein, A.H., Howard, B.V., Steinberg, D., Witztum, J.L. (2004). Antioxidant vitamin supplements and cardiovascular disease. Circulation, 110(5), 637-641.
  • [11] Demir, T., Akpınar, Ö., Kara, H., Güngör, H. (2019). Nar (Punica granatum L.) kabuğunun in vitro antidiyabetik, antienflamatuar, sitotoksik, antioksidan ve antimikrobiyal aktivitesi. Akademik Gıda , 17(1) , 61-71.
  • [12] Fisher, L., Ianiro, T., Lau, F., Wang, H., Daggy, B. (2015). Synergistic effects of phenolic mixtures in human cell models of aging. The FASEB Journal, 29, 608-36.
  • [13] Hollman, P.C. (2014). Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Archives of Biochemistry and Biophysics, 559, 100-105.
  • [14] Cirillo, G., Curcio, M., Vittorio, O., Iemma, F., Restuccia, D., Spizzirri, U.G., Puoci, F., Picci, N. (2016). Polyphenol conjugates and human health: a perspective review. Critical Reviews in Food Science and Nutrition, 56(2), 326-337.
  • [15] Kotecha, R., Takami, A., Espinoza, J.L. (2016). Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget, 7(32), 52517.
  • [16] Nayak, B., Liu, R.H., Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition, 55(7), 887-918.
  • [17] Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200.
  • [18] Gökmen, V., Serpen, A., Fogliano, V. (2009). Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends in Food Science & Technology, 20(6-7), 278-288.
  • [19] Pérez-Jiménez, J., Saura-Calixto, F. (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International, 74, 315-323.
  • [20] Le Bourvellec, C., Renard, C.M.G.C. (2012). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213-248.
  • [21] Bate-Smith, E.C. (1973). Tannins of herbaceous leguminosae. Phytochemistry, 12(7), 1809-1812.
  • [22] Ignat, I., Volf, I., Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4), 1821-1835.
  • [23] Papillo, V.A., Vitaglione, P., Graziani, G., Gokmen, V., Fogliano, V. (2014). Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. Journal of Agricultural and Food Chemistry, 62(18), 4119-4126.
  • [24] Gruz, J., Ayaz, F.A., Torun, H., Strnad, M. (2011). Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry, 124(1), 271-277.
  • [25] White, B.L., Howard, L.R., Prior, R.L. (2010). Release of bound procyanidins from cranberry pomace by alkaline hydrolysis. Journal of Agricultural and Food Chemistry, 58(13), 7572-7579.
  • [26] Oboh, G., Rocha, J.B.T. (2007). Polyphenols in red pepper (Capsicum annuum var. aviculare (Tepin)) and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. European Food Research and Technology, 225(2), 239-247.
  • [27] Nara, K., Miyoshi, T., Honma, T., Koga, H. (2006). Antioxidative activity of bound-form phenolics in potato peel. Bioscience, Biotechnology, and Biochemistry, 70(6), 1489-1491.
  • [28] Hervert-Hernández, D., Sáyago-Ayerdi, S.G., Goni, I.S.A.B.E.L. (2010). Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. Journal of Agricultural and Food Chemistry, 58(6), 3399-3406.
  • [29] Peričin, D., Krimer, V., Trivić, S., Radulvić, L. (2009). The distribution of phenolic acids in pumpkin’s hull-less seed, skin, oil cake meal, dehulled kernel and hull. Food Chemistry, 113(2), 450-456.
  • [30] Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N., Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3(2), 88-99.
  • [31] Ayaz, F.A., Hayırlıoglu-Ayaz, S., Alpay-Karaoglu, S., Grúz, J., Valentová, K., Ulrichová, J., Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19-25.
  • [32] Irakli, M.N., Samanidou, V.F., Biliaderis, C.G., Papadoyannis, I.N. (2012). Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 134(3), 1624-1632.
  • [33] Dvořáková, M., Guido, L.F., Dostálek, P., Skulilová, Z., Moreira, M.M., Barros, A.A. (2008). Antioxidant properties of free, soluble ester and insoluble‐bound phenolic compounds in different barley varieties and corresponding malts. Journal of the Institute of Brewing, 114(1), 27-33.
  • [34] Chandrasekara, A., Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706-6714.
  • [35] Ti, H., Li, Q., Zhang, R., Zhang, M., Deng, Y., Wei, Z., Chi, J., Zhang, Y. (2014). Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chemistry, 159, 166-174.
  • [36] Zhou, Z., Robards, K., Helliwell, S., Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry, 87(3), 401-406.
  • [37] Neo, Y.P., Ariffin, A., Tan, C.P., Tan, Y.A. (2008). Determination of oil palm fruit phenolic compounds and their antioxidant activities using spectrophotometric methods. International Journal of Food Science-Technology, 43(10), 1832-1837.
  • [38] Ademiluyi, A.O., Oboh, G. (2013). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65(3), 305-309.
  • [39] Wang, Y.K., Zhang, X., Chen, G.L., Yu, J., Yang, L.Q., Gao, Y.Q. (2016). Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. Journal of Functional Foods, 24, 359-372.
  • [40] Alshikh, N., Camargo, A.C., Shahidi, F. (2015). Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. Journal of Functional Foods, 18, 1022-1038.
  • [41] Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556-567.
  • [42] de Freitas, V., Mateus, N. (2001). Structural features of procyanidin interactions with salivary proteins. Journal of Agricultural and Food Chemistry, 49(2), 940-945.
  • [43] Ozdal, T., Capanoglu, E., Altay, F. (2013). A review on protein-phenolic interactions and associated changes. Food Research International, 51(2), 954-970.
  • [44] Czubinski, J., Dwiecki, K. (2017). A review of methods used for investigation of protein-phenolic compound interactions. International Journal of Food Science & Technology, 52(3), 573-585.
  • [45] Rinaldi, A., Jourdes, M., Teissedre, P.L., Moio, L. (2014). A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chemistry, 164, 142-149.
  • [46] Ferrer-Gallego, R., Gonçalves, R., Rivas-Gonzalo, J.C., Escribano-Bailón, M.T., De Freitas, V. (2012). Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chemistry, 135(2), 651-658.
  • [47] Friesen, K., Chang, C., Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18-23.
  • [48] Soares, S., Mateus, N., de Freitas, V. (2012). Carbohydrates inhibit salivary proteins precipitation by condensed tannins. Journal of Agricultural and Food Chemistry, 60(15), 3966-3972.
  • [49] Haratifar, S., Corredig, M. (2014). Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chemistry, 143, 27-32.
  • [50] Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., Tajmir-Riahi, H.A. (2011). Interaction of milk α-and β-caseins with tea polyphenols. Food Chemistry, 126(2), 630-639.
  • [51] Rawel, H.M., Meidtner, K., Kroll, J. (2005). Binding of selected phenolic compounds to proteins. Journal of Agricultural and Food Chemistry, 53(10), 4228-4235.
  • [52] Budryn, G., Pałecz, B., Rachwał-Rosiak, D., Oracz, J., Zaczyńska, D., Belica, S., Navarro-González, I., Meseguer, J.M.V., Pérez-Sánchez, H. (2015). Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chemistry, 168, 276-287.
  • [53] Rossetti, D., Yakubov, G.E., Stokes, J.R., Williamson, A.M., Fuller, G.G. (2008). Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids, 22(6), 1068-1078.
  • [54] Erkan-Koç, B., Türkyılmaz, M., Yemiş, O., Özkan, M. (2015). Effects of various protein-and polysaccharide-based clarification agents on antioxidative compounds and colour of pomegranate juice. Food Chemistry, 184, 37-45.
  • [55] Aguié-Béghin, V., Sausse, P., Meudec, E., Cheynier, V., Douillard, R. (2008). Polyphenol-β-casein complexes at the air/water interface and in solution: effects of polyphenol structure. Journal of Agricultural and Food Chemistry, 56(20), 9600-9611.
  • [56] Rawel, H.M., Czajka, D., Rohn, S., Kroll, J. (2002). Interactions of different phenolic acids and flavonoids with soy proteins. International Journal of Biological Macromolecules, 30(3-4), 137-150.
  • [57] Pantidos, N., Boath, A., Lund, V., Conner, S., McDougall, G.J. (2014). Phenolic-rich extracts from the edible seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: potential anti-hyperglycemic effects. Journal of Functional Foods, 10, 201-209.
  • [58] Kyle, J.A., Morrice, P.C., McNeill, G., Duthie, G.G. (2007). Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. Journal of Agricultural and Food Chemistry, 55(12), 4889-4894.
  • [59] Renard, C.M., Watrelot, A.A., Le Bourvellec, C. (2017). Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends in Food Science & Technology, 60, 43-51.
  • [60] Watrelot, A.A., Le Bourvellec, C., Imberty, A., Renard, C.M. (2014). Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydrate Polymers, 99, 527-536.
  • [61] Brahem, M., Eder, S., Renard, C.M., Loonis, M., Le Bourvellec, C. (2017). Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT-Food Science and Technology, 85, 380-384.
  • [62] Bautista-Ortín, A.B., Martínez-Hernández, A., Ruiz-García, Y., Gil-Muñoz, R., Gómez-Plaza, E. (2016). Anthocyanins influence tannin-cell wall interactions. Food Chemistry, 206, 239-248.
  • [63] Celik, S.E., Özyürek, M., Güçlü, K., Apak, R. (2015). Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 83(3-4), 309-319.
  • [64] Zhou, M., Hu, Q., Wang, T., Xue, J., Luo, Y. (2016). Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery. Carbohydrate Polymers, 153, 336-344.
  • [65] Pastoriza, S., Delgado-Andrade, C., Haro, A., Rufián-Henares, J.A. (2011). A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chemistry, 129(4), 1926-1932.
  • [66] Arranz, S., Silván, J.M., Saura‐Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molecular Nutrition & Food Research, 54(11), 1646-1658.
  • [67] Saura-Calixto, F., Serrano, J., Goni, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492-501.
  • [68] Angelino, D., Cossu, M., Marti, A., Zanoletti, M., Chiavaroli, L., Brighenti, F., Del Rio, D., Martini, D. (2017). Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food & Function, 8(7), 2368-2393.
  • [69] Dufour, C., Loonis, M., Delosière, M., Buffière, C., Hafnaoui, N., Santé-Lhoutellier, V., Rémond, D. (2018). The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry, 240, 314-322.
  • [70] López-Oliva, M.E., Pozuelo, M.J., Rotger, R., Muñoz-Martínez, E., Goni, I. (2013). Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-x L expression and minimising oxidative stress in rat distal colonic mucosa. British Journal of Nutrition, 109(1), 4-16.
  • [71] Pérez-Jiménez, J., Díaz-Rubio, M.E., Saura-Calixto, F. (2013). Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutrition Research Reviews, 26(2), 118-129.
  • [72] Gorelik, S., Kanner, J., Schurr, D., Kohen, R. (2013). A rational approach to prevent postprandial modification of LDL by dietary polyphenols. Journal of Functional Foods, 5(1), 163-169.
  • [73] Gobert, M., Rémond, D., Loonis, M., Buffière, C., Santé-Lhoutellier, V., Dufour, C. (2014). Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food & Function, 5(9), 2166-2174.
  • [74] Chacar, S., Itani, T., Hajal, J., Saliba, Y., Louka, N., Faivre, J.F., Maroun, R., Fares, N. (2018). The impact of long‐term intake of phenolic compounds‐rich grape pomace on rat gut microbiota. Journal of Food Science, 83(1), 246-251.
  • [75] Verzelloni, E., Pellacani, C., Tagliazucchi, D., Tagliaferri, S., Calani, L., Costa, L.G., Brighenti., F., Borges, G.,Crozier, A., Conte, A., Del Rio, D. (2011). Antiglycative and neuroprotective activity of colon‐derived polyphenol catabolites. Molecular Nutrition & Food Research, 55(S1), S35-S43.
  • [76] Saura‐Calixto, F., Pérez‐Jiménez, J., Touriño, S., Serrano, J., Fuguet, E., Torres, J.L., Goñi, I. (2010). Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition & Food Research, 54(7), 939-946.
  • [77] Núñez‐Sánchez, M.A., González‐Sarrías, A., Romo‐Vaquero, M., García‐Villalba, R., Selma, M.V., Tomás‐Barberán, F.A., García‐Conesa, M.T., Espín, J.C. (2015). Dietary phenolics against colorectal cancer-from promising preclinical results to poor translation into clinical trials: pitfalls and future needs. Molecular Nutrition & Food Research, 59(7), 1274-1291.
  • [78] Sánchez-Tena, S., Lizárraga, D., Miranda, A., Vinardell, M.P., García-García, F., Dopazo, J., Torres, J.R., Saura-Calixto, F., Capellà, G., Cascante, M. (2013). Grape antioxidant dietary fiber inhibits intestinal polyposis in Apc Min/+ mice: relation to cell cycle and immune response. Carcinogenesis, 34(8), 1881-1888.
  • [79] Hajiaghaalipour, F., Kanthimathi, M.S., Sanusi, J., Rajarajeswaran, J. (2015). White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chemistry, 169, 401-410.
  • [80] Reagan-Shaw, S., Nihal, M., Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661.
  • [81] Lv, J., Yu, L., Lu, Y., Niu, Y., Liu, L., Costa, J., Yu, L.L. (2012). Phytochemical compositions, and antioxidant properties, and antiproliferative activities of wheat flour. Food Chemistry, 135(2), 325-331.
  • [82] Zeriouh, W., Nani, A., Belarbi, M., Dumont, A., De Rosny, C., Aboura, I., Ghanemi, F.Z., Murtaza, B., Patoli, D., Thomas, C., Apetoh, L., Rébé, C., Delmas, D., Khan, N.A., Ghiringhelli, F., Rialland, M., Hicham, A. (2017). Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. Plos One, 12(2), 0170823.
  • [83] Ortega, N., Reguant, J., Romero, M.P., Macia, A., Motilva, M.J. (2009). Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. Journal of Agricultural and Food Chemistry, 57(13), 5743-5749.
  • [84] Lorrain, B., Dangles, O., Loonis, M., Armand, M., Dufour, C. (2012). Dietary iron-initiated lipid oxidation and its inhibition by polyphenols in gastric conditions. Journal of Agricultural and Food Chemistry, 60(36), 9074-9081.
  • [85] Petzke, K.J., Schuppe, S., Rohn, S., Rawel, H.M., Kroll, J. (2005). Chlorogenic acid moderately decreases the quality of whey proteins in rats. Journal of Agricultural and Food Chemistry, 53(9), 3714-3720.
  • [86] Ribnicky, D.M., Roopchand, D.E., Poulev, A., Kuhn, P., Oren, A., Cefalu, W.T., Raskin, I. (2014). Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition, 30, 4-10.
  • [87] Felberg, I., Farah, A., Monteiro, M.C., Ronoel, L.D.O., Pacheco, S., Calado, V., Donangelo, C.M. (2015). Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. Journal of Functional Foods, 19, 688-699.
  • [88] Pineda-Vadillo, C., Nau, F., Dubiard, C.G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., Guadarrama, A., Tóth, T., Csavajda, E., Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Alessandra., B., Dupont, D. (2016). In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 88, 284-292.
  • [89] Serra, A., Macia, A., Romero, M.P., Valls, J., Bladé, C., Arola, L., Motilva, M.J. (2010). Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. British Journal of Nutrition, 103(7), 944-952.
  • [90] Snelders, J., Olaerts, H., Dornez, E., Van de Wiele, T., Aura, A.M., Vanhaecke, L., Delcour, J.A., Courtin, C.M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 10, 1-12.

Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı

Yıl 2019, , 526 - 537, 31.12.2019
https://doi.org/10.24323/akademik-gida.667270

Öz

Bu derleme kapsamında gıdaların yapısında bulunan bağlı (ekstrakte edilemeyen) fenolik bileşiklerin özellikleri, oluşturduğu komplekslerden protein-fenolik ve karbonhidrat-fenolik ilişkisi, sindirimdeki metabolizması ve biyoyararlılığı üzerinde durulmuştur. Gıdaların yapısındaki fenolik bileşikler organik solventlerin kullanıldığı klasik metotlar ile belirlenmektedir. Ancak ekstraksiyon kalıntısında kalan ve toplam fenolik bileşiklerin önemli bir kısmını oluşturan bağlı formları çoğunlukla göz ardı edilmektedir. Bu nedenle, özellikle bağlı fenolik madde içeriği yüksek olan gıdaların toplam fenolik madde içeriği, bağlı formaları dikkate alınmadığından geçmişte doğru şekilde ortaya koyulamamıştır. Meyve, sebze, tahıl ve baklagil ürünlerindeki toplam fenolik içeriğinin %20-60’ına karşılık gelen bağlı fenolik bileşikler, fenolik kompozisyonun belirlenmesinde artık dikkate alınmaktadır. Bağlı fenolikler hücre duvarındaki selüloz, pektin, protein gibi yapılara ester, eter veya asetal bağlarıyla kovalent olarak bağlanabilmektedirler. Fenolik bileşikler sahip oldukları aromatik halkalar ve hidroksil gruplarından dolayı hidrofobik ve hidrofilik interaksiyonlarla, hidrojen ve kovalent bağlarla hücre duvarına ve ortamdaki protein, karbonhidrat, lipit gibi yapılara bağlanabilme yeteneğine sahiptirler. Fenoliklerin makro moleküllerle etkileşiminde molekül ağırlığı, polimerizasyon derecesi, aromatik grupların sayısı gibi birçok etkili faktör bulunmaktadır. Oluşan bu kompleksin sağlık üzerine bir çok olumlu etkisi olduğu bilinmektedir. Gıdalardaki fenolik bileşiklerin biyoyararlılığı, sindirim veya bağırsak sisteminde gıda matriksinden salınımına, emilimine ve kan dolaşım sistemine geçişine bağlıdır. Özellikle bazı gıdalardaki polifenoller hücre duvarı yapısındaki protein, karbonhidrat, lipit gibi makromoleküllere bağlanarak mide-bağırsak sistemindeki biyoyararlılığı büyük ölçüde etkilemektedir. Hücre duvarı materyallerinin sindiriminin zor olması nedeniyle bağlı fenolik bileşikler mide-bağırsak sisteminde değişime uğramadan kolona ulaşabilmektedir.

Kaynakça

  • [1] Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429-452.
  • [2] Shahidi, F., Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216.
  • [3] Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.
  • [4] Albishi, T., John, J.A., Al-Khalifa, A.S., Shahidi, F. (2013). Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties. Journal of Functional Foods, 5(2), 930-939.
  • [5] Kaur, S., Mondal, P. (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology & Experimentation, 1(1), 00005.
  • [6] Zhang, H., Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
  • [7] Zhang, X.L., Guo, Y.S., Wang, C.H., Li, G. Q., Xu, J.J., Chung, H.Y., Ye, W.C., Li, Y.L., Wang, G.C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306.
  • [8] Thangapazham, R.L., Sharma, A., Maheshwari, R.K. (2006). Multiple molecular targets in cancer chemoprevention by curcumin. The AAPS Journal, 8(3), E443.
  • [9] Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., Mattila, P., Jula, A. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. The American Journal of Clinical Nutrition, 87(2), 323-331.
  • [10] Kris-Etherton, P.M., Lichtenstein, A.H., Howard, B.V., Steinberg, D., Witztum, J.L. (2004). Antioxidant vitamin supplements and cardiovascular disease. Circulation, 110(5), 637-641.
  • [11] Demir, T., Akpınar, Ö., Kara, H., Güngör, H. (2019). Nar (Punica granatum L.) kabuğunun in vitro antidiyabetik, antienflamatuar, sitotoksik, antioksidan ve antimikrobiyal aktivitesi. Akademik Gıda , 17(1) , 61-71.
  • [12] Fisher, L., Ianiro, T., Lau, F., Wang, H., Daggy, B. (2015). Synergistic effects of phenolic mixtures in human cell models of aging. The FASEB Journal, 29, 608-36.
  • [13] Hollman, P.C. (2014). Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Archives of Biochemistry and Biophysics, 559, 100-105.
  • [14] Cirillo, G., Curcio, M., Vittorio, O., Iemma, F., Restuccia, D., Spizzirri, U.G., Puoci, F., Picci, N. (2016). Polyphenol conjugates and human health: a perspective review. Critical Reviews in Food Science and Nutrition, 56(2), 326-337.
  • [15] Kotecha, R., Takami, A., Espinoza, J.L. (2016). Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget, 7(32), 52517.
  • [16] Nayak, B., Liu, R.H., Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition, 55(7), 887-918.
  • [17] Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. Journal of Agricultural and Food Chemistry, 60(45), 11195-11200.
  • [18] Gökmen, V., Serpen, A., Fogliano, V. (2009). Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends in Food Science & Technology, 20(6-7), 278-288.
  • [19] Pérez-Jiménez, J., Saura-Calixto, F. (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International, 74, 315-323.
  • [20] Le Bourvellec, C., Renard, C.M.G.C. (2012). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213-248.
  • [21] Bate-Smith, E.C. (1973). Tannins of herbaceous leguminosae. Phytochemistry, 12(7), 1809-1812.
  • [22] Ignat, I., Volf, I., Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4), 1821-1835.
  • [23] Papillo, V.A., Vitaglione, P., Graziani, G., Gokmen, V., Fogliano, V. (2014). Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. Journal of Agricultural and Food Chemistry, 62(18), 4119-4126.
  • [24] Gruz, J., Ayaz, F.A., Torun, H., Strnad, M. (2011). Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry, 124(1), 271-277.
  • [25] White, B.L., Howard, L.R., Prior, R.L. (2010). Release of bound procyanidins from cranberry pomace by alkaline hydrolysis. Journal of Agricultural and Food Chemistry, 58(13), 7572-7579.
  • [26] Oboh, G., Rocha, J.B.T. (2007). Polyphenols in red pepper (Capsicum annuum var. aviculare (Tepin)) and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. European Food Research and Technology, 225(2), 239-247.
  • [27] Nara, K., Miyoshi, T., Honma, T., Koga, H. (2006). Antioxidative activity of bound-form phenolics in potato peel. Bioscience, Biotechnology, and Biochemistry, 70(6), 1489-1491.
  • [28] Hervert-Hernández, D., Sáyago-Ayerdi, S.G., Goni, I.S.A.B.E.L. (2010). Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. Journal of Agricultural and Food Chemistry, 58(6), 3399-3406.
  • [29] Peričin, D., Krimer, V., Trivić, S., Radulvić, L. (2009). The distribution of phenolic acids in pumpkin’s hull-less seed, skin, oil cake meal, dehulled kernel and hull. Food Chemistry, 113(2), 450-456.
  • [30] Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N., Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3(2), 88-99.
  • [31] Ayaz, F.A., Hayırlıoglu-Ayaz, S., Alpay-Karaoglu, S., Grúz, J., Valentová, K., Ulrichová, J., Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19-25.
  • [32] Irakli, M.N., Samanidou, V.F., Biliaderis, C.G., Papadoyannis, I.N. (2012). Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 134(3), 1624-1632.
  • [33] Dvořáková, M., Guido, L.F., Dostálek, P., Skulilová, Z., Moreira, M.M., Barros, A.A. (2008). Antioxidant properties of free, soluble ester and insoluble‐bound phenolic compounds in different barley varieties and corresponding malts. Journal of the Institute of Brewing, 114(1), 27-33.
  • [34] Chandrasekara, A., Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706-6714.
  • [35] Ti, H., Li, Q., Zhang, R., Zhang, M., Deng, Y., Wei, Z., Chi, J., Zhang, Y. (2014). Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chemistry, 159, 166-174.
  • [36] Zhou, Z., Robards, K., Helliwell, S., Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry, 87(3), 401-406.
  • [37] Neo, Y.P., Ariffin, A., Tan, C.P., Tan, Y.A. (2008). Determination of oil palm fruit phenolic compounds and their antioxidant activities using spectrophotometric methods. International Journal of Food Science-Technology, 43(10), 1832-1837.
  • [38] Ademiluyi, A.O., Oboh, G. (2013). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65(3), 305-309.
  • [39] Wang, Y.K., Zhang, X., Chen, G.L., Yu, J., Yang, L.Q., Gao, Y.Q. (2016). Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. Journal of Functional Foods, 24, 359-372.
  • [40] Alshikh, N., Camargo, A.C., Shahidi, F. (2015). Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. Journal of Functional Foods, 18, 1022-1038.
  • [41] Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556-567.
  • [42] de Freitas, V., Mateus, N. (2001). Structural features of procyanidin interactions with salivary proteins. Journal of Agricultural and Food Chemistry, 49(2), 940-945.
  • [43] Ozdal, T., Capanoglu, E., Altay, F. (2013). A review on protein-phenolic interactions and associated changes. Food Research International, 51(2), 954-970.
  • [44] Czubinski, J., Dwiecki, K. (2017). A review of methods used for investigation of protein-phenolic compound interactions. International Journal of Food Science & Technology, 52(3), 573-585.
  • [45] Rinaldi, A., Jourdes, M., Teissedre, P.L., Moio, L. (2014). A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chemistry, 164, 142-149.
  • [46] Ferrer-Gallego, R., Gonçalves, R., Rivas-Gonzalo, J.C., Escribano-Bailón, M.T., De Freitas, V. (2012). Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chemistry, 135(2), 651-658.
  • [47] Friesen, K., Chang, C., Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18-23.
  • [48] Soares, S., Mateus, N., de Freitas, V. (2012). Carbohydrates inhibit salivary proteins precipitation by condensed tannins. Journal of Agricultural and Food Chemistry, 60(15), 3966-3972.
  • [49] Haratifar, S., Corredig, M. (2014). Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chemistry, 143, 27-32.
  • [50] Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., Tajmir-Riahi, H.A. (2011). Interaction of milk α-and β-caseins with tea polyphenols. Food Chemistry, 126(2), 630-639.
  • [51] Rawel, H.M., Meidtner, K., Kroll, J. (2005). Binding of selected phenolic compounds to proteins. Journal of Agricultural and Food Chemistry, 53(10), 4228-4235.
  • [52] Budryn, G., Pałecz, B., Rachwał-Rosiak, D., Oracz, J., Zaczyńska, D., Belica, S., Navarro-González, I., Meseguer, J.M.V., Pérez-Sánchez, H. (2015). Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chemistry, 168, 276-287.
  • [53] Rossetti, D., Yakubov, G.E., Stokes, J.R., Williamson, A.M., Fuller, G.G. (2008). Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids, 22(6), 1068-1078.
  • [54] Erkan-Koç, B., Türkyılmaz, M., Yemiş, O., Özkan, M. (2015). Effects of various protein-and polysaccharide-based clarification agents on antioxidative compounds and colour of pomegranate juice. Food Chemistry, 184, 37-45.
  • [55] Aguié-Béghin, V., Sausse, P., Meudec, E., Cheynier, V., Douillard, R. (2008). Polyphenol-β-casein complexes at the air/water interface and in solution: effects of polyphenol structure. Journal of Agricultural and Food Chemistry, 56(20), 9600-9611.
  • [56] Rawel, H.M., Czajka, D., Rohn, S., Kroll, J. (2002). Interactions of different phenolic acids and flavonoids with soy proteins. International Journal of Biological Macromolecules, 30(3-4), 137-150.
  • [57] Pantidos, N., Boath, A., Lund, V., Conner, S., McDougall, G.J. (2014). Phenolic-rich extracts from the edible seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: potential anti-hyperglycemic effects. Journal of Functional Foods, 10, 201-209.
  • [58] Kyle, J.A., Morrice, P.C., McNeill, G., Duthie, G.G. (2007). Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. Journal of Agricultural and Food Chemistry, 55(12), 4889-4894.
  • [59] Renard, C.M., Watrelot, A.A., Le Bourvellec, C. (2017). Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends in Food Science & Technology, 60, 43-51.
  • [60] Watrelot, A.A., Le Bourvellec, C., Imberty, A., Renard, C.M. (2014). Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydrate Polymers, 99, 527-536.
  • [61] Brahem, M., Eder, S., Renard, C.M., Loonis, M., Le Bourvellec, C. (2017). Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT-Food Science and Technology, 85, 380-384.
  • [62] Bautista-Ortín, A.B., Martínez-Hernández, A., Ruiz-García, Y., Gil-Muñoz, R., Gómez-Plaza, E. (2016). Anthocyanins influence tannin-cell wall interactions. Food Chemistry, 206, 239-248.
  • [63] Celik, S.E., Özyürek, M., Güçlü, K., Apak, R. (2015). Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 83(3-4), 309-319.
  • [64] Zhou, M., Hu, Q., Wang, T., Xue, J., Luo, Y. (2016). Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery. Carbohydrate Polymers, 153, 336-344.
  • [65] Pastoriza, S., Delgado-Andrade, C., Haro, A., Rufián-Henares, J.A. (2011). A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chemistry, 129(4), 1926-1932.
  • [66] Arranz, S., Silván, J.M., Saura‐Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Molecular Nutrition & Food Research, 54(11), 1646-1658.
  • [67] Saura-Calixto, F., Serrano, J., Goni, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492-501.
  • [68] Angelino, D., Cossu, M., Marti, A., Zanoletti, M., Chiavaroli, L., Brighenti, F., Del Rio, D., Martini, D. (2017). Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food & Function, 8(7), 2368-2393.
  • [69] Dufour, C., Loonis, M., Delosière, M., Buffière, C., Hafnaoui, N., Santé-Lhoutellier, V., Rémond, D. (2018). The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry, 240, 314-322.
  • [70] López-Oliva, M.E., Pozuelo, M.J., Rotger, R., Muñoz-Martínez, E., Goni, I. (2013). Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-x L expression and minimising oxidative stress in rat distal colonic mucosa. British Journal of Nutrition, 109(1), 4-16.
  • [71] Pérez-Jiménez, J., Díaz-Rubio, M.E., Saura-Calixto, F. (2013). Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutrition Research Reviews, 26(2), 118-129.
  • [72] Gorelik, S., Kanner, J., Schurr, D., Kohen, R. (2013). A rational approach to prevent postprandial modification of LDL by dietary polyphenols. Journal of Functional Foods, 5(1), 163-169.
  • [73] Gobert, M., Rémond, D., Loonis, M., Buffière, C., Santé-Lhoutellier, V., Dufour, C. (2014). Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food & Function, 5(9), 2166-2174.
  • [74] Chacar, S., Itani, T., Hajal, J., Saliba, Y., Louka, N., Faivre, J.F., Maroun, R., Fares, N. (2018). The impact of long‐term intake of phenolic compounds‐rich grape pomace on rat gut microbiota. Journal of Food Science, 83(1), 246-251.
  • [75] Verzelloni, E., Pellacani, C., Tagliazucchi, D., Tagliaferri, S., Calani, L., Costa, L.G., Brighenti., F., Borges, G.,Crozier, A., Conte, A., Del Rio, D. (2011). Antiglycative and neuroprotective activity of colon‐derived polyphenol catabolites. Molecular Nutrition & Food Research, 55(S1), S35-S43.
  • [76] Saura‐Calixto, F., Pérez‐Jiménez, J., Touriño, S., Serrano, J., Fuguet, E., Torres, J.L., Goñi, I. (2010). Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition & Food Research, 54(7), 939-946.
  • [77] Núñez‐Sánchez, M.A., González‐Sarrías, A., Romo‐Vaquero, M., García‐Villalba, R., Selma, M.V., Tomás‐Barberán, F.A., García‐Conesa, M.T., Espín, J.C. (2015). Dietary phenolics against colorectal cancer-from promising preclinical results to poor translation into clinical trials: pitfalls and future needs. Molecular Nutrition & Food Research, 59(7), 1274-1291.
  • [78] Sánchez-Tena, S., Lizárraga, D., Miranda, A., Vinardell, M.P., García-García, F., Dopazo, J., Torres, J.R., Saura-Calixto, F., Capellà, G., Cascante, M. (2013). Grape antioxidant dietary fiber inhibits intestinal polyposis in Apc Min/+ mice: relation to cell cycle and immune response. Carcinogenesis, 34(8), 1881-1888.
  • [79] Hajiaghaalipour, F., Kanthimathi, M.S., Sanusi, J., Rajarajeswaran, J. (2015). White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chemistry, 169, 401-410.
  • [80] Reagan-Shaw, S., Nihal, M., Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661.
  • [81] Lv, J., Yu, L., Lu, Y., Niu, Y., Liu, L., Costa, J., Yu, L.L. (2012). Phytochemical compositions, and antioxidant properties, and antiproliferative activities of wheat flour. Food Chemistry, 135(2), 325-331.
  • [82] Zeriouh, W., Nani, A., Belarbi, M., Dumont, A., De Rosny, C., Aboura, I., Ghanemi, F.Z., Murtaza, B., Patoli, D., Thomas, C., Apetoh, L., Rébé, C., Delmas, D., Khan, N.A., Ghiringhelli, F., Rialland, M., Hicham, A. (2017). Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. Plos One, 12(2), 0170823.
  • [83] Ortega, N., Reguant, J., Romero, M.P., Macia, A., Motilva, M.J. (2009). Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. Journal of Agricultural and Food Chemistry, 57(13), 5743-5749.
  • [84] Lorrain, B., Dangles, O., Loonis, M., Armand, M., Dufour, C. (2012). Dietary iron-initiated lipid oxidation and its inhibition by polyphenols in gastric conditions. Journal of Agricultural and Food Chemistry, 60(36), 9074-9081.
  • [85] Petzke, K.J., Schuppe, S., Rohn, S., Rawel, H.M., Kroll, J. (2005). Chlorogenic acid moderately decreases the quality of whey proteins in rats. Journal of Agricultural and Food Chemistry, 53(9), 3714-3720.
  • [86] Ribnicky, D.M., Roopchand, D.E., Poulev, A., Kuhn, P., Oren, A., Cefalu, W.T., Raskin, I. (2014). Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition, 30, 4-10.
  • [87] Felberg, I., Farah, A., Monteiro, M.C., Ronoel, L.D.O., Pacheco, S., Calado, V., Donangelo, C.M. (2015). Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. Journal of Functional Foods, 19, 688-699.
  • [88] Pineda-Vadillo, C., Nau, F., Dubiard, C.G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., Guadarrama, A., Tóth, T., Csavajda, E., Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Alessandra., B., Dupont, D. (2016). In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 88, 284-292.
  • [89] Serra, A., Macia, A., Romero, M.P., Valls, J., Bladé, C., Arola, L., Motilva, M.J. (2010). Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. British Journal of Nutrition, 103(7), 944-952.
  • [90] Snelders, J., Olaerts, H., Dornez, E., Van de Wiele, T., Aura, A.M., Vanhaecke, L., Delcour, J.A., Courtin, C.M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 10, 1-12.
Toplam 90 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Gülşah Karabulut Bu kişi benim 0000-0002-4540-3044

Oktay Yemiş 0000-0002-7461-5185

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 23 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Karabulut, G., & Yemiş, O. (2019). Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı. Akademik Gıda, 17(4), 526-537. https://doi.org/10.24323/akademik-gida.667270
AMA Karabulut G, Yemiş O. Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı. Akademik Gıda. Aralık 2019;17(4):526-537. doi:10.24323/akademik-gida.667270
Chicago Karabulut, Gülşah, ve Oktay Yemiş. “Fenolik Bileşiklerin Bağlı Formları Ve Biyoyararlılığı”. Akademik Gıda 17, sy. 4 (Aralık 2019): 526-37. https://doi.org/10.24323/akademik-gida.667270.
EndNote Karabulut G, Yemiş O (01 Aralık 2019) Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı. Akademik Gıda 17 4 526–537.
IEEE G. Karabulut ve O. Yemiş, “Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı”, Akademik Gıda, c. 17, sy. 4, ss. 526–537, 2019, doi: 10.24323/akademik-gida.667270.
ISNAD Karabulut, Gülşah - Yemiş, Oktay. “Fenolik Bileşiklerin Bağlı Formları Ve Biyoyararlılığı”. Akademik Gıda 17/4 (Aralık 2019), 526-537. https://doi.org/10.24323/akademik-gida.667270.
JAMA Karabulut G, Yemiş O. Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı. Akademik Gıda. 2019;17:526–537.
MLA Karabulut, Gülşah ve Oktay Yemiş. “Fenolik Bileşiklerin Bağlı Formları Ve Biyoyararlılığı”. Akademik Gıda, c. 17, sy. 4, 2019, ss. 526-37, doi:10.24323/akademik-gida.667270.
Vancouver Karabulut G, Yemiş O. Fenolik Bileşiklerin Bağlı Formları ve Biyoyararlılığı. Akademik Gıda. 2019;17(4):526-37.

Cited By












Oleuropein ve Kuersetinin Covıd-19 Hastalığında Etkinliği
Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi
https://doi.org/10.51754/cusbed.876692


25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).