Araştırma Makalesi
BibTex RIS Kaynak Göster

Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri

Yıl 2019, Cilt: 17 Sayı: 1, 38 - 46, 26.03.2019
https://doi.org/10.24323/akademik-gida.544066

Öz

Granny
Smith elmalar taze olarak tüketilebildiği gibi donmuş gıda sanayinde de yaygın
olarak kullanılmaktadırlar. Gıdaların üretim basamakları sırasında polifenol
içeriğinde meydana gelen değişimlerin incelenmesi son ürünün besin değerini
artırmak açısından önemlidir. Bu konu dikkate alınarak, bu çalışmada Granny
Smith elmaların bireysel hızlı dondurma (IQF) işlemi sırasında çeşitli üretim basamaklardan
alınan numunelerin polifenol içeriğinde meydana gelen değişimlerin değerlendirilmesi
amaçlanmıştır. Toplam fenolik ve flavonoid madde ile toplam antioksidan
kapasitedeki değişimler spektrofotometrik yöntemlerle tespit edilmiş olup,
polifenolik bileşiklerin tayini yüksek performanslı sıvı
kromatografisi–fotodiyot dizi dedektörü (HPLC–PDA) kullanılarak kromatografik
yöntemle yapılmıştır. HPLC–PDA ile yapılan analizler sonucunda hammaddede flavanoller,
dihidrokalkonlar, fenolik asitler ve flavonoller dahil 4 gruba ait toplam 10
adet polifenolik bileşen tespit edilmiştir. Atık olarak ayrılan ürünlerin
dihidrokalkonlar ve flavonoller açısından hammaddeden daha zengin olduğu
görülmüştür (%140–378) (p<0.05). Asitlendirme toplam fenolik madde, toplam
flavonoid madde, toplam antioksidan kapasite, flavanoller ve fenolik asitlerin
içeriğinde önemli artışlara neden olmuştur (%9–121) (p<0.05). Kesim ve
dondurma işlemlerinden sonra asitlendirmeye kıyasla düşüşler görülmüş olsa da,
hammadde ve son ürün arasında toplam fenolik madde, toplam flavonoid madde,
flavanol, dihidrokalkon ve fenolik asit içeriği bakımından istatistiksel olarak
önemli bir farklılık görülmemiştir (p>0.05). Bu sonuçlar IQF Granny Smith
elmaların da taze elmalar gibi iyi bir polifenol kaynağı olduğuna işaret
etmiştir.

Kaynakça

  • [1] Rana, S., Bhushan, S. (2016). Apple phenolics as nutraceuticals: Assessment, analysis and application. Journal of Food Science and Technology, 53(4), 1727-1738.
  • [2] T.C. Gıda, Tarım Ve Hayvancılık Bakanlığı Tarımsal Ekonomi Ve Politika Geliştirme Enstitüsü (TEPGE). Ürün Raporu Elma 2017. Erişim tarihi: Aralık, 2018. https://arastirma.tarimorman.gov.tr/tepge.
  • [3] Weichselbaum, E., Wyness, L., Stanner, S. (2010). Apple polyphenols and cardiovascular disease–a review of the evidence. Nutrition Bulletin, 35(2), 92-101.
  • [4] Tu, S.H., Chen, L.C., Ho, Y.S. (2017). An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. Journal of Food and Drug Analysis, 25(1), 119-124.
  • [5] Kamiloglu, S., Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties, 18(3), 521-535.
  • [6] Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64(S3), S112.
  • [7] Taiwo, K., Angersbach, A., Knorr, D. (2002). Rehydration studies on pretreated and osmotically dehydrated apple slices. Journal of Food Science, 67(2), 842-847.
  • [8] Şengül, Y. (2014). Farklı Dondurma Ve Çözündürme Metotlarının Nar Tanelerinin Fiziksel Ve Antioksidan Özellikleri Üzerine Etkisi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [9] Chassagne-Berces, S., Fonseca, F., Citeau, M., Marin, M. (2010). Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity. LWT-Food Science and Technology, 43(9), 1441-1449.
  • [10] AOAC. (1999). Official Method of Analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.
  • [11] Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • [12] Kim, D.O., Jeong, S.W., Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326.
  • [13] Capanoglu, E., Kamiloglu, S., Ozkan, G., Apak, R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, R. Apak, E. Capanoglu, & F. Shahidi, Editors., Chicester, United Kingdom: John Wiley & Sons Ltd., p. 273-286.
  • [14] Miller, N.J., Rice-Evans, C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26(6), 195-199.
  • [15] Kumaran, A., Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114.
  • [16] Benzie, I.F., Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [17] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [18] Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964-973.
  • [19] Cruz, A.C., Guiné, R.P., Gonçalves, J.C. (2015). Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1), 54-78.
  • [20] Dalmau, M.E., Bornhorst, G.M., Eim, V., Rosselló, C., Simal, S. (2017). Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chemistry, 215, 7-16.
  • [21] Santacatalina, J., Contreras, M., Simal, S., Cárcel, J., Garcia-Perez, J.V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109.
  • [22] Capanoglu, E., Beekwilder, J., Boyacioglu, D., De Vos, R.C., Hall, R.D. (2010). The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Critical Reviews in Food Science and Nutrition, 50(10), 919-930.
  • [23] Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., Pilizota, V. (2014). Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. Journal of Agricultural and Food Chemistry, 62(7), 1674-1682.
  • [24] Santacatalina, J., Rodríguez, O., Simal, S., Cárcel, J., Mulet, A., García-Pérez, J.V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44.
  • [25] Ertekin Filiz, B., Seydim, A.C. (2018). Kinetic changes of antioxidant parameters, ascorbic acid loss, and hydroxymethyl furfural formation during apple chips production. Journal of Food Biochemistry, 42(6), e12676.
  • [26] Ho, Y.C., Yu, H.T., Su, N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry, 60(10), 2674-2681.
  • [27] Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S.E., Bektasoglu, B., Berker, K.I., Ozyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547.
  • [28] Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M.T., Rupasinghe, H.V. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401.
  • [29] Vrhovsek, U., Rigo, A., Tonon, D., Mattivi, F. (2004). Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 52(21), 6532-6538.
  • [30] Valavanidis, A., Vlachogianni, T., Psomas, A., Zovoili, A., Siatis, V. (2009). Polyphenolic profile and antioxidant activity of five apple cultivars grown under organic and conventional agricultural practices. International Journal of Food Science & Technology, 44(6), 1167-1175.
  • [31] Karaman, Ş., Tütem, E., Başkan, K.S., Apak, R. (2013). Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. Journal of the Science of Food and Agriculture, 93(4), 867-875.
  • [32] Erdoğan, S.S., Demirci, M. (2015). Fitokimyasal kaynağı elma posası. Akademik Gıda, 13(3), 265-271.

Effect of Individual Quick Freezing Steps on Polyphenol Content and Antioxidant Capacity of Granny Smith Apples

Yıl 2019, Cilt: 17 Sayı: 1, 38 - 46, 26.03.2019
https://doi.org/10.24323/akademik-gida.544066

Öz

Granny
Smith apples can be consumed as fresh or they are widely used in the frozen
food industry. Determining the changes in polyphenol content during the
production steps of foods is important for the nutritional value of the final
product. The aim of this study was to determine the changes in the polyphenol
content of Granny Smith apples taken from various steps of the individual quick
freezing (IQF) treatment. Total phenolic content, total flavonoid content, and
total antioxidant capacity were determined using spectrophotometric methods
whereas the quantification of polyphenols were carried out by a chromatographic
method using high performance liquid chromatography–photodiode array detector
(HPLC–PDA). As a result of HPLC–PDA analysis, a total of 10 polyphenolic
compounds belonging to 4 groups including flavanols, dihydrochalcones, phenolic
acids and flavonols were identified in the raw material. Waste product was
richer in dihydrochalcones and flavonols compared to raw material (140-378%) (p<0.05).
Acidification resulted in significant increases in total phenolic content,
total flavonoid content, total antioxidant capacity, flavanols and phenolic
acids (%9–121) (p<0.05). Although there were decreases after cutting and
freezing steps compared to acidification, there was no statistically significant
difference between the raw material and end product in terms of the total
phenolic content, total flavonoid content, flavanols, dihydrochalcones and
phenolic acids (p>0.05). These results indicated that IQF Granny Smith
apples are good sources of polyphenols, just as fresh apples.

Kaynakça

  • [1] Rana, S., Bhushan, S. (2016). Apple phenolics as nutraceuticals: Assessment, analysis and application. Journal of Food Science and Technology, 53(4), 1727-1738.
  • [2] T.C. Gıda, Tarım Ve Hayvancılık Bakanlığı Tarımsal Ekonomi Ve Politika Geliştirme Enstitüsü (TEPGE). Ürün Raporu Elma 2017. Erişim tarihi: Aralık, 2018. https://arastirma.tarimorman.gov.tr/tepge.
  • [3] Weichselbaum, E., Wyness, L., Stanner, S. (2010). Apple polyphenols and cardiovascular disease–a review of the evidence. Nutrition Bulletin, 35(2), 92-101.
  • [4] Tu, S.H., Chen, L.C., Ho, Y.S. (2017). An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. Journal of Food and Drug Analysis, 25(1), 119-124.
  • [5] Kamiloglu, S., Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties, 18(3), 521-535.
  • [6] Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64(S3), S112.
  • [7] Taiwo, K., Angersbach, A., Knorr, D. (2002). Rehydration studies on pretreated and osmotically dehydrated apple slices. Journal of Food Science, 67(2), 842-847.
  • [8] Şengül, Y. (2014). Farklı Dondurma Ve Çözündürme Metotlarının Nar Tanelerinin Fiziksel Ve Antioksidan Özellikleri Üzerine Etkisi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [9] Chassagne-Berces, S., Fonseca, F., Citeau, M., Marin, M. (2010). Freezing protocol effect on quality properties of fruit tissue according to the fruit, the variety and the stage of maturity. LWT-Food Science and Technology, 43(9), 1441-1449.
  • [10] AOAC. (1999). Official Method of Analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.
  • [11] Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • [12] Kim, D.O., Jeong, S.W., Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326.
  • [13] Capanoglu, E., Kamiloglu, S., Ozkan, G., Apak, R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, R. Apak, E. Capanoglu, & F. Shahidi, Editors., Chicester, United Kingdom: John Wiley & Sons Ltd., p. 273-286.
  • [14] Miller, N.J., Rice-Evans, C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26(6), 195-199.
  • [15] Kumaran, A., Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114.
  • [16] Benzie, I.F., Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [17] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [18] Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964-973.
  • [19] Cruz, A.C., Guiné, R.P., Gonçalves, J.C. (2015). Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1), 54-78.
  • [20] Dalmau, M.E., Bornhorst, G.M., Eim, V., Rosselló, C., Simal, S. (2017). Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chemistry, 215, 7-16.
  • [21] Santacatalina, J., Contreras, M., Simal, S., Cárcel, J., Garcia-Perez, J.V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109.
  • [22] Capanoglu, E., Beekwilder, J., Boyacioglu, D., De Vos, R.C., Hall, R.D. (2010). The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Critical Reviews in Food Science and Nutrition, 50(10), 919-930.
  • [23] Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., Pilizota, V. (2014). Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. Journal of Agricultural and Food Chemistry, 62(7), 1674-1682.
  • [24] Santacatalina, J., Rodríguez, O., Simal, S., Cárcel, J., Mulet, A., García-Pérez, J.V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44.
  • [25] Ertekin Filiz, B., Seydim, A.C. (2018). Kinetic changes of antioxidant parameters, ascorbic acid loss, and hydroxymethyl furfural formation during apple chips production. Journal of Food Biochemistry, 42(6), e12676.
  • [26] Ho, Y.C., Yu, H.T., Su, N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry, 60(10), 2674-2681.
  • [27] Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S.E., Bektasoglu, B., Berker, K.I., Ozyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547.
  • [28] Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M.T., Rupasinghe, H.V. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401.
  • [29] Vrhovsek, U., Rigo, A., Tonon, D., Mattivi, F. (2004). Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 52(21), 6532-6538.
  • [30] Valavanidis, A., Vlachogianni, T., Psomas, A., Zovoili, A., Siatis, V. (2009). Polyphenolic profile and antioxidant activity of five apple cultivars grown under organic and conventional agricultural practices. International Journal of Food Science & Technology, 44(6), 1167-1175.
  • [31] Karaman, Ş., Tütem, E., Başkan, K.S., Apak, R. (2013). Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. Journal of the Science of Food and Agriculture, 93(4), 867-875.
  • [32] Erdoğan, S.S., Demirci, M. (2015). Fitokimyasal kaynağı elma posası. Akademik Gıda, 13(3), 265-271.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Senem Kamiloğlu 0000-0003-3902-4360

Yayımlanma Tarihi 26 Mart 2019
Gönderilme Tarihi 27 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 17 Sayı: 1

Kaynak Göster

APA Kamiloğlu, S. (2019). Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda, 17(1), 38-46. https://doi.org/10.24323/akademik-gida.544066
AMA Kamiloğlu S. Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda. Mart 2019;17(1):38-46. doi:10.24323/akademik-gida.544066
Chicago Kamiloğlu, Senem. “Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği Ve Antioksidan Kapasitesine Etkileri”. Akademik Gıda 17, sy. 1 (Mart 2019): 38-46. https://doi.org/10.24323/akademik-gida.544066.
EndNote Kamiloğlu S (01 Mart 2019) Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda 17 1 38–46.
IEEE S. Kamiloğlu, “Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri”, Akademik Gıda, c. 17, sy. 1, ss. 38–46, 2019, doi: 10.24323/akademik-gida.544066.
ISNAD Kamiloğlu, Senem. “Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği Ve Antioksidan Kapasitesine Etkileri”. Akademik Gıda 17/1 (Mart 2019), 38-46. https://doi.org/10.24323/akademik-gida.544066.
JAMA Kamiloğlu S. Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda. 2019;17:38–46.
MLA Kamiloğlu, Senem. “Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği Ve Antioksidan Kapasitesine Etkileri”. Akademik Gıda, c. 17, sy. 1, 2019, ss. 38-46, doi:10.24323/akademik-gida.544066.
Vancouver Kamiloğlu S. Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda. 2019;17(1):38-46.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).