BibTex RIS Kaynak Göster

Cow’s Milk Allergens and their Control Methods

Yıl 2012, Cilt: 10 Sayı: 1, 114 - 124, 01.03.2012

Öz

Cow’s milk allergy, one of the most common food allergies endemic in childhood, is a reaction arisen against milk proteins after digestion. Studies have been demonstrated that β-lactoglobulin and caseins are the major allergens caused to cow’s milk allergy, and other milk proteins have antigenic properties. Controlling these allergens without elimination of cow’s milk from the diet is an important problem to be solved. The complete elimination of cow’s milk proteins from diet may have a negative effect on child nutrition; therefore, recently, studies have focused on the effects of food processing methods on controlling the milk allergens. Different processing techniques have been searched to reduce cow’s milk allergy. In this study, the structures of cow’s milk allergens, the reasons of allergic reaction and some technological methods such as heat treatment, enzymatic hydrolysis, Maillard Reaction, high pressure and fermentation applied for controlling the allergens have been reviewed

Kaynakça

  • [1] Bock, S.A., Sampson, H.A., Atkins, F.M., Zeiger, R.S., Lehrer, S., Sachs, M., Bush, R.K., Metcalfe, D.D., 1988. Double-Blind, Placebo-Controlled Food Challenge (Dbpcfc) as an Office Procedure - a Manual. J. Allergy Clin. Immunol. 82 (6): 986-997.
  • [2] Kavas, G., 2008. İnek sütü proteinlerine bağlı alerji olgusu. Hasad Gıda 24 (278): 26-31.
  • [3] Wilson, N.W., Hamburger, RN., 1988. Allergy to Cow’s Milk in the 1st Year of Life and Its Prevention. Ann. Allergy 61 (5): 323-328.
  • [4] Isolauri, E., 1997. Cow-milk allergy. Environ Toxicol Phar 4 (1-2): 137-141.
  • [5] Monaci, L., Tregoat, V., Hengel, A.J., Anklam, E., 2006. Milk allergens, their characteristics and their detection in food: A review. Eur. Food Res. Tech. 223 (2): 149-179.
  • [6] Exl, B.M., Fritsche, R., 2001. Cow's milk protein allergy and possible means for its prevention. Nutrition 17 (7-8): 642-651.
  • [7] Fiocchi, A., Brozek, J., Schunemann, H., Bahna, S.L., von Berg, A., Beyer, K., Bozzola, M., Bradsher, J., Compalati, E., Ebisawa, M., Guzman, M.A., Li, H., Heine, R.G., Keith, P., Lack, G., Landi, M., Martelli, A., Rance, F., Sampson, H., Stein, A., Terracciano, L., Vieths, S., 2010. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology 21 Suppl 21: 1- 125.
  • [8] Dreborg, S., 1995. Allergen Levels Causing Sensitization, Bronchial Hyperreactivity and Asthma. Pediat. Allerg. Imm. 6: 22-26.
  • [9] Isolauri, E., Turjanmaa, K., 1996. Combined skin prick and patch testing enhances identification of food allergy in infants with atopic dermatitis. J. Allergy Clin. Immunol. 97: 9–15.
  • [10] Guo, B.H., 2001. Dairy Chemistry. Beijing: China Light Industry Press.
  • [11] Fox, P.F., 2003. Advanced Dairy Chemistry. New York: Kluwer Academic/Plenum Press.
  • [12] Sawyer, L., Kontopidis, G., 2000. The core lipocalin, bovine β-lactoglobulin. Biochimica et Biophysica Acta 1482: 136–148.
  • [13] Reddy, I.M., Kella, N.K.D., Kinsella, J.E., 1988. Structural and conformational basis of the resistance of beta-lactoglobulin to peptic and chymotryptic digestion. J. Agric. Food Chem. 36: 737–741.
  • [14] Wal, J.M., 2001. Structure and function of milk allergens. Allergy 56: 35–38.
  • [15] El-Agamy, E.I., 2007. The challenge of cow milk protein allergy. Small Ruminant Res. 68: 64–72.
  • [16] Goldman, A.S., Anderson, D.W., Sellers, W.A., Saperstein, S., Kniker, W.T., Halpern, S.T., 1963. Milk allergy. I. Oral challenge with milk and isolated milk proteins in allergic children. Pediatrics 32: 425– 443.
  • [17] Docena, G.H., Fernandez, R., Chirdo, F.G., Fossati, C.A., 1996. Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy 51 (6): 412–416.
  • [18] Bernard, H., Creminon, C., Yvon, M., Wal, J.M., 1998. Specificity of the human IgE response to the different purified caseins in allergy to cow’s milk proteins. Int. Arch. Allergy Immunol. 115 (3): 235– 244.
  • [19] Busse, P.J., Jarvinen, K.M., Vila, L., Beyer, K., Sampson, H.A., 2002. Identification of sequential IgE-binding epitopoes on bovine alpha (S2) casein in cow’s milk allergic patients. Int. Arch. Allergy Immunol. 129(1): 93–96.
  • [20] Cocco, R.R., Jarvinen, K.M., Sampson, H.A., Beyer, K., 2003. Mutational analysis of major, sequential IgE-binding epitopes in alphas1-casein, a major cow’s milk allergen. J. Allergy Clin. Immunol. 112(2): 433–437.
  • [21] Spies, J., 1973. Milk allergy. J. Milk Food Technol. 36: 225–231.
  • [22] Wal, J.M., 2002. Cow's milk proteins/allergens. Ann. Allergy Asthma Immunol. 89: 3–10.
  • [23] Kleber, N., Krause, I., Illgner, S., Hinrichs, J., 2004. The antigenic response of α-lactoglobulin is modulated by thermally induced aggregation. Eur. Food Res. Technol. 219: 105–110.
  • [24] Sharma, S., Kumar, P., Betzel, C., Singh, T.P., 2001. Structure and function of proteins involved in milk allergies. J. Chromatogr. B 756: 183–187.
  • [25] Fritsche, R., 2003. Role for technology in dairy allergy. Aust. J. Dairy Technol. 58: 89–91.
  • [26] Pittia, P., Wilde, P.J., Husband, F.A., Clark, D.C., 1996. Functional and structural properties of blactoglobulin as affected by high-pressure treatment. J. Food Sci. 61(6): 1123–1127.
  • [27] Pescuma, M., Hebert, E.M., Dalgalarrondo, M., Haertle, T., Mozzi, F., Hobert, J.M., Valdez, G.F., 2009. Effect of exopolysaccharides on the hydrolysis of β-lactoglobulin by lactobacillus acidophilus crlin an in vitro gastric/pancreatic system. J. Agric. Food Chem. 57: 5571–5577.
  • [28] Kleber, N., Hinrichs, J., 2007. Antigenic response of β-lactoglobulin in thermally treated bovine skim milk and sweet whey. Milchwissenschaft 62: 121–124.
  • [29] Sawyer, L., Barlow, P.N., Boland, M.J., Creamer, L.K., Denton, H., Edwards, P.J.B., Holt, C., Jameson, G.B., Kontopidis, G., Norris, G.E., Uhrinova, S., Wu, S.Y., 2002. Milk protein structurewhat can it tell the dairy industry? Int. Dairy J. 12: 299–310.
  • [30] Brownlow, S., Morais Cabral, J.H., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C., Sawyer, L., 1997. Bovine β-lactoglobulin at 1.8 Å resolution-still an enigmatic lipocalin. Structure 5: 481–495.
  • [31] Breiteneder, H., Mills, E.N., 2005. Molecular properties of food allergens. J Allergy Clin Immunol 115:14–23.
  • [32] Selo, I., Clement, G., Bernard, H., Chatel, J.M., Creminon, C., Peltre, G., Wal, J., 1999. Allergy to bovine β-lactoglobulin: specificity of human IgE to tryptic peptides. Clin. Exp. Allergy 29: 1055–1063.
  • [33] Järvinen, K.M., Chatchatee, P., Bardina, L., Beyer, K., Sampson, H.A., 2001. IgE and IgG binding epitopes on alpha-lactalbumin and betalactoglobulin in cow's milk allergy. Int. Arch. Allergy Immunol. 126: 111–118.
  • [34] Hinrichs, J., Rademacher, B., 2005. Kinetics of combined thermal and pressure-induced whey protein denaturation in bovine skim milk. Int. Dairy J. 15: 315–323.
  • [35] McKenzie, H.A., 1996. Alpha-lactalbumins and lysozymes. EXS 75: 365–409.
  • [36] Brew, K., Grobler, J., 1992. α-Lactalbumin. In: Fox P (ed) Advances in Dairy Chemistry, Elsevier Applied Sciences, NewYork, pp. 191–229.
  • [37] Wal, J.M., 1998. Cow's milk allergens. Allergy 53: 1013–1022.
  • [38] Adams, S.L., Barnett, D., Walsh, B.J., Pearce, R.J., Hill, D.J., Howden, M.E., 1991. Human IgE-binding synthetic peptides of bovine β-lactoglobulin and αlactalbumin. In vitro cross-reactivity of the allergens. Immunol. Cell Bio. 69: 191–197.
  • [39] Maynard, F., Jos, R., Wal, J.M., 1997. Human IgE binding capacity of tryptic peptides from bovine αlactalbumin. Int. Arch. Allergy Immunol. 113: 478– 488.
  • [40] Bernard, H., Meisel, H., Creminon, C., Wal, J.M., 2000. Phosphorylation is a posttranslational event which affects IgE binding capacity of caseins. FEBS Lett. 467:239–244.
  • [41] Chatchatee, P., Jarvinen, K.M., Bardina, L., Beyer, K., Sampson, H.A., 2001. Identification of IgE- and IgG-binding epitopes on αS1-casein: Differences in patients with persistent and transient cow's milk allergy. J. Allergy Clin. Immunol. 107: 379–383.
  • [42] Sicherer, S.H., Sampson, H.A., 1999. Cow's milk protein-specific IgE concentrations in two age groups of milk-allergic children and in children achieving clinical tolerance.Clin. Exp. Allergy 29:507–512.
  • [43] Vila, L., Beyer, K., Jarvinen, K.M., Chatchatee, P., Bardina, L., Sampson, H.A., 2001. Role of conformational and linear epitopes in the achievement of tolerance in cow's milk allergy. Clin. Exp. Allergy 31:1599–1606.
  • [44] Järvinen, K.M., Beyer, K., Vila, L., Chatchatee, P., Busse, P.J., Sampson, H.A., 2002. B-cell epitopes as a screening instrument for persistent cow's milk 533 allergy. J. Allergy Clin. Immunol. 110: 293–297.
  • [45] Spuergin, P., Mueller, H., Walter, M., Schiltz, E., Forster, J., 1996. Allergenic epitopes of bovine αS1- casein recognized by human IgE and IgG. Allergy 51: 306–312.
  • [46] Carter, D.C., Ho, J.X., 1994. Structure of serum albumin. Adv. Protein Chem. 45:153–203 63.
  • [47] Restani, P., Ballabio, C., Cattaneo, A., Isoardi, P., Terracciano, L., Fiocchi, A., 2004. Characterization of bovine serum albumin epitopes and their role in allergic reactions. Allergy 59:21–24.
  • [48] Peters, T., Feldhoff, R.C., Reed, R.G., 1977. Immunochemical studies of fragments of bovine serum albumin. J. Biol. Chem. 252:8464–8468.
  • [49] Atassi, M.Z., Habeeb, A.F., Lee, C.L., 1976. Immunochemistry of serum albumin-II. Isolation and characterization of a fragment from the first third of bovine serum albumin carrying almost all the antigenic reactivity of the protein. Immunochemistry 13:547–555 68.
  • [50] Karjalainen, J., Martin, J.M., Knip, M., Ilonen, J., Robinson, B.H., Savilahti, E., Akerblom, H.K., Dosch, H.M., 1992. A bovine serum albumin peptide as a possible trigger of insulin dependent diabetes mellitus. N. Engl J. Med. 327:302–307.
  • [51] Beretta, B., Conti, A., Fiocchi, A., Gaiaschi, A., Galli, C.L., Giuffrida, M.G., Ballabio, C., Restani, P., 2001. Antigenic determinants of bovine serum albumin. Int. Arch. Allergy Immunol. 126:188–195.
  • [52] Schanbacher, F.L., Goodman, R.E., Talhouk, R.S., 1993. Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J. Dairy Sci. 76:3812–383172.
  • [53] Indyk, H.E., Filonzi, E.L., 2005. Determination of lactoferrin in bovine milk, colostrum and ınfant formulas by optical biosensor analysis. Int. Dairy J. 15:429–438
  • [54] Taylor, S.L., Hefle, S.L., Bindslev-Jensen, C., Bock, S.A., Burks, A.W., Christie, L., Hill, D.J., Host, A., Hourihane, J.O., Lack, G., Metcalfe, D.D., MoneretVautrin, D.A., Vadas, P.A., Rance, F., Skrypec, D.J., Trautman, T.A., Yman, I.M., Zeiger, R.S., 2002. Factors affecting the determination of threshold doses for allergenic foods: how much is too much? J. Allergy Clin. Immunol. 109: 24–30.
  • [55] Adel-Patient, K., Bernard, H., Ah-Leung, S., Creminon, C., Wal, J., 2005. Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 60:658–664.
  • [56] Knight, K.L., Becker, R.S., 1987. Isolation of genes encoding bovine IgM, IgG, IgA and IgE chains. Vet. Immunol Immunopathol. 17:17–24.
  • [57] Heyermann, H., Butler, J.E., Frangione, B., 1992. The heterogeneity of cattle IgG2. V. Differences in the primary structure of cattle IgG2 allotypes. Mol. Immunol. 29:1147–1152.
  • [58] Rabbiani, H., Brown, W., Butler, J., Hammarstrom, L., 1997. Genetic polymorphism of the IGHG3 gene in cattle Immunogenetics 46:326–331.
  • [59] Lefranc-Millot, C., Vercaigne-Marko, D., Wal, J.M., Lepretre, A., Peltre, G., Dhulster, P., Guillochon, D., 1996. Comparison of the IgE titers to bovine colostral G immunoglobulins and their F(ab’)2 fragments in sera of patients allergic to milk. Int. Arch. Allergy Immunol. 110:156–162.
  • [60] Natale, M., Bisson, C., Monti, G., Peltran, A., Garoffo, L.P., Valentini, S., Fabris, C., Bertino, E., Coscia, A., Conti, A., 2004. Cow's milk allergens identification by twodimensional immunoblotting and mass spectrometry. Mol. Nutr. Food Res. 48:363–369.
  • [61] Oldfield, D.J., Singh, H., Taylor, M.W., 2005. Kinetics 577 of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. J. Dairy Res. 72: 369–378.
  • [62] Hanson, L.A., Mansson, I., 1961. Immune electrophoretic studies of bovine milk and milk products. Acta Pediatr. 50: 480–484. [63] Baldo, B.A., 1984. Milk allergies. Aust. J. Dairy Tech. 39: 120–128.
  • [64] Ehn, B.M., Ekstrand, B., Bengtsson, U., Ahlstedt, S., 2004. Modification of IgE binding during heat processing of the cow's milk allergen betalactoglobulin. J. Agric. Food Chem. 52: 1398–1403.
  • [65] Davis, P.J., Williams, S.C., 1998. Protein modification by thermal processing. Allergy 53: 102–105.
  • [66] Bu, G.H., Luo, Y.K., Zheng, Z., Zheng, H., 2009. Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food Agric. Immunol. 20: 195–206.
  • [67] Kleber, N., Maier, S., Hinrichs, J., 2007. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature. Innovat. Food Sci. Emerg. Tech. 8: 39–45.
  • [68] Mierzejewska, D., Kubicka, E., 2006. Effect of temperature on immunoreactive properties of the cow milk whey protein β-lactoglobulin. Milchwissenschaft 61: 69–72.
  • [69] Rytkönen, J., Karttunen, T.J., Karttunen, R., Valkonen, K.H., Jenmalm, M.C., Alatossava, T., Björkstén, B., Kokkonen, J., 2002. Effect of heat denaturation on beta-lactoglobulin-induced gastrointestinal sensitization in rats: Denatured βLGinduces a more intensive local immunologic response than native β-LG. Pediatr. Allergy Immunol. 13: 269–277.
  • [70] Heyman, M., 1999. Evaluation of the impact of food technology on the allergenicity of cow's milk proteins. Proc. Nutr. Soc. 58: 587–592.
  • [71] Haddad, Z.H., Kalra, V., Verma, S., 1979. IgE antibodies to peptic and peptic-tryptic digest of αlactoglobulin: significance in food hypersensitivity. Ann. Allergy 42: 368–371.
  • [72] Alting, A.C., Meijer, R.J., van Beresteijn, E.C., 1998. Selective hydrolysis of milk proteins to facilitate the elimination of the ABBOS epitopes of bovine serum albumin and other immunoreactive epitopes. J. Food Prot. 61 (8): 1007–1012.
  • [73] Pahud, J.J., Monti, J.C., Jost, R., 1985. Allergenicity of whey protein: its modification by tryptic in vitro hydrolysis of the protein. J. Pediatr. Gastroenterol. Nutr. 4: 408–413.
  • [74] Nakamura, T., Sado, H., Syukunobe, Y., Hirota, T., 1993. Antigenicity of whey protein hydrolysates prepared by combination of two proteases. Milchwissenschaft 48: 667−670.
  • [75] Ena, J.M., Van Beresteijn, E.C.H., Robben, A.J.P.M., Schmidt, D.G., 1995. Whey protein antigenicity reduction by fungal proteinases and a pepsin/pancreatin combination. J. Food Sci. 60: 104–110.
  • [76] Van Hoeyveld, E.M., Escalona-Monge, M., De Swert, L.F.A., Stevens, E.A.M., 1998. Allergenic and antigenic activity of peptide fragments in a whey hydrolysate formula. Clin. Exp. Allergy 28: 1131–1137.
  • [77] Bertrand-Harb, C., Baday, A., Dalgalarrondo, M., Chobert, J-M., Haertle, T., 2002. Thermal modifications of structure and co-denaturation of αlactalbumin and β-lactoglobulin induce changes of solubility and susceptibility to proteases. Nahrung 46: 283–289.
  • [78] Peyron, S., Mouécoucou, J., Frémont, S., Sanchez, C., Gontard, N., 2006. Effects of heat treatment and pectin addition on beta-lactoglobulin allergenicity. J. Agric. Food Chem. 54: 5643–5650.
  • [79] Terheggen-Lagro, S.W., Khouw, I.M., Schaafsma, A., Wauters, E.A., 2002. Safety of a new extensively hydrolysed formula in children with cow's milk protein allergy: a double blind crossover study. BMC Pediatr. 2: 10.
  • [80] Businco, L., Bruno, G., Giampietro, P.G., 1999. Prevention and management of food allergy. Acta Pñdiatr. Suppl. 88: 104–109.
  • [81] Chan, Y.H., Shek, L.P.C., Aw, M., Quak, S.H., Lee, B.W., 2002. Use of hypoallergenic Formula in the prevention of atopic disease among Asian children. J. Paediatr. Child. Health 38: 84–88.
  • [82] Blecker, U., 1997. Role of hydrolyzed formulas in nutritional allergy prevention in infants. South Med. J. 90: 1170–1175.
  • [83] Morgan, F., Bouhallab, S., Mollé, D., Henry, G., Maubois, J.L., Léonil, J., 1998. Lactolation of βlactoglobulin monitored by electrospray ionisation mass spectrometry. Int. Dairy J. 8: 95–98.
  • [84] Taheri-Kafrani, A., Gaudin, J.C., Rabesona, H., Nioi, C., Agarwal, D., Drouet, M., Chobert, J.M., Bordbar, A.K., Haertlft, T., 2009. Effects of heating and glycation of beta-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J. Agric. Food Chem. 57 (11):4974–4982.
  • [85] Hattori, M., Miyakawa, S., Ohama, Y., Kawamura, H., Yoshida, T, To-o, K, Kuriki T, Takahashi K. 2004. Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides. J. Agric. Food Chem. 52: 4546–4553.
  • [86] Wróblewska, B., Jedrychowski, L., 2002. Effect of conjugation of cow milk whey protein with polyethylene glycol on changes in their immunoreactive and allergic properties. Food Agric. Immunol. 14: 155–162.
  • [87] Hattori, M., Nagasawa, K., Ohgata, K., Sone, N., Fukuda, A., Matsuda, H., Takahashi, K., 2000. Reduced immunogenicity of β-lactoglobulin by conjugation with carboxymethyl dextran. Bioconjugate Chem. 11: 84–93.
  • [88] Kobayashi, K., Hirano, A., Ohta, A., Yoshida, T., Takahashi, K., Hattori, M., 2001. Reduced immunogenicity of β-lactoglobulin by conjugation with carboxymethyl dextran differing in molecular weight. J. Agric. Food Chem. 49: 823–831.
  • [89] Bu, G.H., Luo, Y.K., Lu, J., Zhang, Y., 2010. Reduced antigenicity of β-lactoglobulin by conjugation with glucose through controlled Maillard reaction conditions. Food Agric. Immunol. 21: 143– 156.
  • [90] Trujillo, A.J., Capellas, M., Saldo, J., Gervilla, R., Guamis, B., 2002. Application of high hydrostatic pressure on milk and dairy products: a review. Innov. Food Sci. Emerg. Technol. 3: 295– 307.
  • [91] Lanciotti, R., Patrignani, F., Lucci, L., Saracino, P., Guerzoni, M.E., 2007. Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chem 102: 542–550.
  • [92] Peñas, E., Préstamo, G., Baeza, M.L., MartínezMolero, M.I., Gomez, R., 2006. Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int. Dairy J. 16: 831–839.
  • [93] Lametti, S., Transidico, P., Bonomi, F., Vecchio, G., Pittia, P., Rovere, P., Dall'Aglio, G., 1997. Molecular modifications of b-lactoglobulin upon exposure to high pressure. J. Agric. Food Chem. 45: 23–29.
  • [94] Dumay, E.M., Kalichevsky, M.T., Cheftel, J., 1994. High pressure unfolding and aggregation of blactoglobulin and the baroprotective effects of sucrose. J. Agric. Food Chem. 42: 1861–1868.
  • [95] Shriver, S.K., Yang, W.W., 2011. Thermal and nonthermal methods for food allergen control. Food Eng. Rev. 3: 26–43.
  • [96] Chobert, J.M, Briand, L., Dufour, E., Dib, R., Dalgalarrondo, M., Heartle, T., 1997. How to increase β-lactoglobulin susceptibility to peptic hydrolysis. J. Food Biochem. 20: 439−462.
  • [97] Dufour, E., Herve`, G., Haertle, T., 1995. Hydrolysis of blactoglobulin by thermolysin and trypsin under high hydrostatic pressure. Biopolymers 35: 475– 483.
  • [98] Stapelfeldt, H., Petersen, P.H., Kristiansen, K.R., Qvist, K.B., Skibsted, L.H., 1996. Effect of high hydrostatic pressure on the enzymic hydrolysis of beta-lactoglobulin B by trypsin, thermolysin and pepsin. J. Dairy Res. 63 (1): 111–118.
  • [99] Considine, T., Singh, H., Patel, H.A., Creamer, L.K., 2005. Influence of binding of sodium dodecyl sulfate, alltrans retinol and 8-anilino-1- naphthalensulfonate on the high-pressure induced unfolding and aggregation of β- lactoglobulin B. J. Agric. Food Chem. 53: 8010−8018.
  • [100] Funtenberger, S., Dumayn, E., Cheftel, J.C., 1997. High-pressure promotes β-lactoglobulin aggregation through SH/S-S interchange reactions. J. Agric. Food Chem. 45: 912−921.
  • [101] Yang, J., Dunker, K., Powers, J.R., Clark, S., Swanson, B.G., 2001. β-Lactoglobulinmolten globule induced by high pressure. J. Agric. Food Chem. 49: 3236−3324.
  • [102] Bonomi, F., Fiocchi, A., Frøkiaer, H., Gaiaschi, A., Iametti, S., Poiesi, C., Rasmussen, P., Restani, P., Rovere, P., 2003. Reduction of immunoreactivity of bovine beta-lactoglobulin upon combined physical and proteolytic treatment. J. Dairy Res. 70: 51–59.
  • [103] Beran, M., Klubal, R., Molik, P., Strohalm, J., Urban, M., Klaudyova, A.A., Prajzlerova, K., 2009. Influence of high-hydrostatic pressure on tryptic and chymotryptic hydrolysis of milk proteins. High Pressure Res. 29: 23–27.
  • [104] Peñas, E., Snel, H., Floris, R., Prestamo, G., Gomez, R., 2006. High pressure can reduce the antigenicity of bovine whey protein hydrolysates. Int. Dairy J. 16: 969–975.
  • [105] Bianchi-Salvadori, B., Camaschella, P., Cislaghi, S., 1995. Rapid enzymatic method for biotyping and control of lactic acid bacteria used in the production of yogurt and some cheeses. Int. J. Food Microbiol. 27: 253–261.
  • [106] Law, J., Haandrikman, A., 1997. Proteolytic enzymes of lactic acid bacteria. Int. Dairy J. 7: 1– 11.
  • [107] Bertrand-Harb, C., Ivanova, I.V., Dalgalarrondo, M., Haertlle, T., 2003. Evolution of β-lactoglobulin and α-lactalbumin content during yoghurt fermentation. Int. Dairy J. 13: 39–45.
  • [108] Cross, M.L., Stevenson, L.M., Gill, H.S., 2001. Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int. Immunopharmacol. 1: 891–901.
  • [109] Majamaa, H., Isolauri, E., 1997. Probiotics: a novel approach in the management of food allergy. J. Allergy Clin. Immunol. 99: 179–185.
  • [110] Bu, G.H., Luo, Y.K., Zhang, Y., Chen, F.S., 2010. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J. Sci. Food Agric. 90: 2015–2020.
  • [111] Tzvetkova, I., Dalgalarrondo, M., Danova, S., Iliev, I., Ivanova, I., Chobert, J-M., Haertle, T., 2007. Hydrolysis of major dairy proteins by lactic acid bacteria from Bulgarian yogurts. J Food Biochem 31: 680–702.
  • [112] Jedrychowski, L., Wroblewska, B., 1999. Reduction of the antigenicity of whey proteins by lactic acid fermentation. Food Agric. Immunol. 11: 91–99.

İnek Sütü Alerjenleri ve Kontrol Yöntemleri

Yıl 2012, Cilt: 10 Sayı: 1, 114 - 124, 01.03.2012

Öz

nek sütü alerjisi, çocuklarda görülen en yaygın gıda alerjilerinden birisi olup sindirim sonrası süt proteinlerine karşı ortaya çıkan olumsuz bir reaksiyondur. Yapılan çalışmalar inek sütü alerjisine yol açan esas alerjenlerin βlaktoglobulin ve kazeinler olduğunu, diğer proteinlerin de antijenik özelliklere sahip olduğunu göstermiştir. İnek sütünü diyetten çıkarmadan bu alerjenlerin kontrol altına alınması önemli bir sorun teşkil eder. İnek sütü proteinlerinin diyetten tamamen uzaklaştırılması beslenme açısından olumsuz etkide bulunacağından, son yıllarda yapılan araştırmalar farklı gıda işleme yöntemlerinin süt alerjenlerini kontrol altına almada etkisi üzerine odaklanmıştır. Bu nedenle inek sütü alerjisinin azaltılması için çeşitli teknolojik işlemler araştırılmakta ve uygulanmaktadır. Bu çalışmada, inek sütü alerjenlerinin yapısı, alerji oluşum nedenleri ve alerjenlerin kontrol altına alınmasında başvurulan ısıl işlem, enzimatik hidroliz, Maillard reaksiyonu, yüksek basınç ve fermantasyon gibi bazı teknolojik yöntemler derlenmiştir

Kaynakça

  • [1] Bock, S.A., Sampson, H.A., Atkins, F.M., Zeiger, R.S., Lehrer, S., Sachs, M., Bush, R.K., Metcalfe, D.D., 1988. Double-Blind, Placebo-Controlled Food Challenge (Dbpcfc) as an Office Procedure - a Manual. J. Allergy Clin. Immunol. 82 (6): 986-997.
  • [2] Kavas, G., 2008. İnek sütü proteinlerine bağlı alerji olgusu. Hasad Gıda 24 (278): 26-31.
  • [3] Wilson, N.W., Hamburger, RN., 1988. Allergy to Cow’s Milk in the 1st Year of Life and Its Prevention. Ann. Allergy 61 (5): 323-328.
  • [4] Isolauri, E., 1997. Cow-milk allergy. Environ Toxicol Phar 4 (1-2): 137-141.
  • [5] Monaci, L., Tregoat, V., Hengel, A.J., Anklam, E., 2006. Milk allergens, their characteristics and their detection in food: A review. Eur. Food Res. Tech. 223 (2): 149-179.
  • [6] Exl, B.M., Fritsche, R., 2001. Cow's milk protein allergy and possible means for its prevention. Nutrition 17 (7-8): 642-651.
  • [7] Fiocchi, A., Brozek, J., Schunemann, H., Bahna, S.L., von Berg, A., Beyer, K., Bozzola, M., Bradsher, J., Compalati, E., Ebisawa, M., Guzman, M.A., Li, H., Heine, R.G., Keith, P., Lack, G., Landi, M., Martelli, A., Rance, F., Sampson, H., Stein, A., Terracciano, L., Vieths, S., 2010. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology 21 Suppl 21: 1- 125.
  • [8] Dreborg, S., 1995. Allergen Levels Causing Sensitization, Bronchial Hyperreactivity and Asthma. Pediat. Allerg. Imm. 6: 22-26.
  • [9] Isolauri, E., Turjanmaa, K., 1996. Combined skin prick and patch testing enhances identification of food allergy in infants with atopic dermatitis. J. Allergy Clin. Immunol. 97: 9–15.
  • [10] Guo, B.H., 2001. Dairy Chemistry. Beijing: China Light Industry Press.
  • [11] Fox, P.F., 2003. Advanced Dairy Chemistry. New York: Kluwer Academic/Plenum Press.
  • [12] Sawyer, L., Kontopidis, G., 2000. The core lipocalin, bovine β-lactoglobulin. Biochimica et Biophysica Acta 1482: 136–148.
  • [13] Reddy, I.M., Kella, N.K.D., Kinsella, J.E., 1988. Structural and conformational basis of the resistance of beta-lactoglobulin to peptic and chymotryptic digestion. J. Agric. Food Chem. 36: 737–741.
  • [14] Wal, J.M., 2001. Structure and function of milk allergens. Allergy 56: 35–38.
  • [15] El-Agamy, E.I., 2007. The challenge of cow milk protein allergy. Small Ruminant Res. 68: 64–72.
  • [16] Goldman, A.S., Anderson, D.W., Sellers, W.A., Saperstein, S., Kniker, W.T., Halpern, S.T., 1963. Milk allergy. I. Oral challenge with milk and isolated milk proteins in allergic children. Pediatrics 32: 425– 443.
  • [17] Docena, G.H., Fernandez, R., Chirdo, F.G., Fossati, C.A., 1996. Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy 51 (6): 412–416.
  • [18] Bernard, H., Creminon, C., Yvon, M., Wal, J.M., 1998. Specificity of the human IgE response to the different purified caseins in allergy to cow’s milk proteins. Int. Arch. Allergy Immunol. 115 (3): 235– 244.
  • [19] Busse, P.J., Jarvinen, K.M., Vila, L., Beyer, K., Sampson, H.A., 2002. Identification of sequential IgE-binding epitopoes on bovine alpha (S2) casein in cow’s milk allergic patients. Int. Arch. Allergy Immunol. 129(1): 93–96.
  • [20] Cocco, R.R., Jarvinen, K.M., Sampson, H.A., Beyer, K., 2003. Mutational analysis of major, sequential IgE-binding epitopes in alphas1-casein, a major cow’s milk allergen. J. Allergy Clin. Immunol. 112(2): 433–437.
  • [21] Spies, J., 1973. Milk allergy. J. Milk Food Technol. 36: 225–231.
  • [22] Wal, J.M., 2002. Cow's milk proteins/allergens. Ann. Allergy Asthma Immunol. 89: 3–10.
  • [23] Kleber, N., Krause, I., Illgner, S., Hinrichs, J., 2004. The antigenic response of α-lactoglobulin is modulated by thermally induced aggregation. Eur. Food Res. Technol. 219: 105–110.
  • [24] Sharma, S., Kumar, P., Betzel, C., Singh, T.P., 2001. Structure and function of proteins involved in milk allergies. J. Chromatogr. B 756: 183–187.
  • [25] Fritsche, R., 2003. Role for technology in dairy allergy. Aust. J. Dairy Technol. 58: 89–91.
  • [26] Pittia, P., Wilde, P.J., Husband, F.A., Clark, D.C., 1996. Functional and structural properties of blactoglobulin as affected by high-pressure treatment. J. Food Sci. 61(6): 1123–1127.
  • [27] Pescuma, M., Hebert, E.M., Dalgalarrondo, M., Haertle, T., Mozzi, F., Hobert, J.M., Valdez, G.F., 2009. Effect of exopolysaccharides on the hydrolysis of β-lactoglobulin by lactobacillus acidophilus crlin an in vitro gastric/pancreatic system. J. Agric. Food Chem. 57: 5571–5577.
  • [28] Kleber, N., Hinrichs, J., 2007. Antigenic response of β-lactoglobulin in thermally treated bovine skim milk and sweet whey. Milchwissenschaft 62: 121–124.
  • [29] Sawyer, L., Barlow, P.N., Boland, M.J., Creamer, L.K., Denton, H., Edwards, P.J.B., Holt, C., Jameson, G.B., Kontopidis, G., Norris, G.E., Uhrinova, S., Wu, S.Y., 2002. Milk protein structurewhat can it tell the dairy industry? Int. Dairy J. 12: 299–310.
  • [30] Brownlow, S., Morais Cabral, J.H., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C., Sawyer, L., 1997. Bovine β-lactoglobulin at 1.8 Å resolution-still an enigmatic lipocalin. Structure 5: 481–495.
  • [31] Breiteneder, H., Mills, E.N., 2005. Molecular properties of food allergens. J Allergy Clin Immunol 115:14–23.
  • [32] Selo, I., Clement, G., Bernard, H., Chatel, J.M., Creminon, C., Peltre, G., Wal, J., 1999. Allergy to bovine β-lactoglobulin: specificity of human IgE to tryptic peptides. Clin. Exp. Allergy 29: 1055–1063.
  • [33] Järvinen, K.M., Chatchatee, P., Bardina, L., Beyer, K., Sampson, H.A., 2001. IgE and IgG binding epitopes on alpha-lactalbumin and betalactoglobulin in cow's milk allergy. Int. Arch. Allergy Immunol. 126: 111–118.
  • [34] Hinrichs, J., Rademacher, B., 2005. Kinetics of combined thermal and pressure-induced whey protein denaturation in bovine skim milk. Int. Dairy J. 15: 315–323.
  • [35] McKenzie, H.A., 1996. Alpha-lactalbumins and lysozymes. EXS 75: 365–409.
  • [36] Brew, K., Grobler, J., 1992. α-Lactalbumin. In: Fox P (ed) Advances in Dairy Chemistry, Elsevier Applied Sciences, NewYork, pp. 191–229.
  • [37] Wal, J.M., 1998. Cow's milk allergens. Allergy 53: 1013–1022.
  • [38] Adams, S.L., Barnett, D., Walsh, B.J., Pearce, R.J., Hill, D.J., Howden, M.E., 1991. Human IgE-binding synthetic peptides of bovine β-lactoglobulin and αlactalbumin. In vitro cross-reactivity of the allergens. Immunol. Cell Bio. 69: 191–197.
  • [39] Maynard, F., Jos, R., Wal, J.M., 1997. Human IgE binding capacity of tryptic peptides from bovine αlactalbumin. Int. Arch. Allergy Immunol. 113: 478– 488.
  • [40] Bernard, H., Meisel, H., Creminon, C., Wal, J.M., 2000. Phosphorylation is a posttranslational event which affects IgE binding capacity of caseins. FEBS Lett. 467:239–244.
  • [41] Chatchatee, P., Jarvinen, K.M., Bardina, L., Beyer, K., Sampson, H.A., 2001. Identification of IgE- and IgG-binding epitopes on αS1-casein: Differences in patients with persistent and transient cow's milk allergy. J. Allergy Clin. Immunol. 107: 379–383.
  • [42] Sicherer, S.H., Sampson, H.A., 1999. Cow's milk protein-specific IgE concentrations in two age groups of milk-allergic children and in children achieving clinical tolerance.Clin. Exp. Allergy 29:507–512.
  • [43] Vila, L., Beyer, K., Jarvinen, K.M., Chatchatee, P., Bardina, L., Sampson, H.A., 2001. Role of conformational and linear epitopes in the achievement of tolerance in cow's milk allergy. Clin. Exp. Allergy 31:1599–1606.
  • [44] Järvinen, K.M., Beyer, K., Vila, L., Chatchatee, P., Busse, P.J., Sampson, H.A., 2002. B-cell epitopes as a screening instrument for persistent cow's milk 533 allergy. J. Allergy Clin. Immunol. 110: 293–297.
  • [45] Spuergin, P., Mueller, H., Walter, M., Schiltz, E., Forster, J., 1996. Allergenic epitopes of bovine αS1- casein recognized by human IgE and IgG. Allergy 51: 306–312.
  • [46] Carter, D.C., Ho, J.X., 1994. Structure of serum albumin. Adv. Protein Chem. 45:153–203 63.
  • [47] Restani, P., Ballabio, C., Cattaneo, A., Isoardi, P., Terracciano, L., Fiocchi, A., 2004. Characterization of bovine serum albumin epitopes and their role in allergic reactions. Allergy 59:21–24.
  • [48] Peters, T., Feldhoff, R.C., Reed, R.G., 1977. Immunochemical studies of fragments of bovine serum albumin. J. Biol. Chem. 252:8464–8468.
  • [49] Atassi, M.Z., Habeeb, A.F., Lee, C.L., 1976. Immunochemistry of serum albumin-II. Isolation and characterization of a fragment from the first third of bovine serum albumin carrying almost all the antigenic reactivity of the protein. Immunochemistry 13:547–555 68.
  • [50] Karjalainen, J., Martin, J.M., Knip, M., Ilonen, J., Robinson, B.H., Savilahti, E., Akerblom, H.K., Dosch, H.M., 1992. A bovine serum albumin peptide as a possible trigger of insulin dependent diabetes mellitus. N. Engl J. Med. 327:302–307.
  • [51] Beretta, B., Conti, A., Fiocchi, A., Gaiaschi, A., Galli, C.L., Giuffrida, M.G., Ballabio, C., Restani, P., 2001. Antigenic determinants of bovine serum albumin. Int. Arch. Allergy Immunol. 126:188–195.
  • [52] Schanbacher, F.L., Goodman, R.E., Talhouk, R.S., 1993. Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J. Dairy Sci. 76:3812–383172.
  • [53] Indyk, H.E., Filonzi, E.L., 2005. Determination of lactoferrin in bovine milk, colostrum and ınfant formulas by optical biosensor analysis. Int. Dairy J. 15:429–438
  • [54] Taylor, S.L., Hefle, S.L., Bindslev-Jensen, C., Bock, S.A., Burks, A.W., Christie, L., Hill, D.J., Host, A., Hourihane, J.O., Lack, G., Metcalfe, D.D., MoneretVautrin, D.A., Vadas, P.A., Rance, F., Skrypec, D.J., Trautman, T.A., Yman, I.M., Zeiger, R.S., 2002. Factors affecting the determination of threshold doses for allergenic foods: how much is too much? J. Allergy Clin. Immunol. 109: 24–30.
  • [55] Adel-Patient, K., Bernard, H., Ah-Leung, S., Creminon, C., Wal, J., 2005. Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 60:658–664.
  • [56] Knight, K.L., Becker, R.S., 1987. Isolation of genes encoding bovine IgM, IgG, IgA and IgE chains. Vet. Immunol Immunopathol. 17:17–24.
  • [57] Heyermann, H., Butler, J.E., Frangione, B., 1992. The heterogeneity of cattle IgG2. V. Differences in the primary structure of cattle IgG2 allotypes. Mol. Immunol. 29:1147–1152.
  • [58] Rabbiani, H., Brown, W., Butler, J., Hammarstrom, L., 1997. Genetic polymorphism of the IGHG3 gene in cattle Immunogenetics 46:326–331.
  • [59] Lefranc-Millot, C., Vercaigne-Marko, D., Wal, J.M., Lepretre, A., Peltre, G., Dhulster, P., Guillochon, D., 1996. Comparison of the IgE titers to bovine colostral G immunoglobulins and their F(ab’)2 fragments in sera of patients allergic to milk. Int. Arch. Allergy Immunol. 110:156–162.
  • [60] Natale, M., Bisson, C., Monti, G., Peltran, A., Garoffo, L.P., Valentini, S., Fabris, C., Bertino, E., Coscia, A., Conti, A., 2004. Cow's milk allergens identification by twodimensional immunoblotting and mass spectrometry. Mol. Nutr. Food Res. 48:363–369.
  • [61] Oldfield, D.J., Singh, H., Taylor, M.W., 2005. Kinetics 577 of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. J. Dairy Res. 72: 369–378.
  • [62] Hanson, L.A., Mansson, I., 1961. Immune electrophoretic studies of bovine milk and milk products. Acta Pediatr. 50: 480–484. [63] Baldo, B.A., 1984. Milk allergies. Aust. J. Dairy Tech. 39: 120–128.
  • [64] Ehn, B.M., Ekstrand, B., Bengtsson, U., Ahlstedt, S., 2004. Modification of IgE binding during heat processing of the cow's milk allergen betalactoglobulin. J. Agric. Food Chem. 52: 1398–1403.
  • [65] Davis, P.J., Williams, S.C., 1998. Protein modification by thermal processing. Allergy 53: 102–105.
  • [66] Bu, G.H., Luo, Y.K., Zheng, Z., Zheng, H., 2009. Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food Agric. Immunol. 20: 195–206.
  • [67] Kleber, N., Maier, S., Hinrichs, J., 2007. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature. Innovat. Food Sci. Emerg. Tech. 8: 39–45.
  • [68] Mierzejewska, D., Kubicka, E., 2006. Effect of temperature on immunoreactive properties of the cow milk whey protein β-lactoglobulin. Milchwissenschaft 61: 69–72.
  • [69] Rytkönen, J., Karttunen, T.J., Karttunen, R., Valkonen, K.H., Jenmalm, M.C., Alatossava, T., Björkstén, B., Kokkonen, J., 2002. Effect of heat denaturation on beta-lactoglobulin-induced gastrointestinal sensitization in rats: Denatured βLGinduces a more intensive local immunologic response than native β-LG. Pediatr. Allergy Immunol. 13: 269–277.
  • [70] Heyman, M., 1999. Evaluation of the impact of food technology on the allergenicity of cow's milk proteins. Proc. Nutr. Soc. 58: 587–592.
  • [71] Haddad, Z.H., Kalra, V., Verma, S., 1979. IgE antibodies to peptic and peptic-tryptic digest of αlactoglobulin: significance in food hypersensitivity. Ann. Allergy 42: 368–371.
  • [72] Alting, A.C., Meijer, R.J., van Beresteijn, E.C., 1998. Selective hydrolysis of milk proteins to facilitate the elimination of the ABBOS epitopes of bovine serum albumin and other immunoreactive epitopes. J. Food Prot. 61 (8): 1007–1012.
  • [73] Pahud, J.J., Monti, J.C., Jost, R., 1985. Allergenicity of whey protein: its modification by tryptic in vitro hydrolysis of the protein. J. Pediatr. Gastroenterol. Nutr. 4: 408–413.
  • [74] Nakamura, T., Sado, H., Syukunobe, Y., Hirota, T., 1993. Antigenicity of whey protein hydrolysates prepared by combination of two proteases. Milchwissenschaft 48: 667−670.
  • [75] Ena, J.M., Van Beresteijn, E.C.H., Robben, A.J.P.M., Schmidt, D.G., 1995. Whey protein antigenicity reduction by fungal proteinases and a pepsin/pancreatin combination. J. Food Sci. 60: 104–110.
  • [76] Van Hoeyveld, E.M., Escalona-Monge, M., De Swert, L.F.A., Stevens, E.A.M., 1998. Allergenic and antigenic activity of peptide fragments in a whey hydrolysate formula. Clin. Exp. Allergy 28: 1131–1137.
  • [77] Bertrand-Harb, C., Baday, A., Dalgalarrondo, M., Chobert, J-M., Haertle, T., 2002. Thermal modifications of structure and co-denaturation of αlactalbumin and β-lactoglobulin induce changes of solubility and susceptibility to proteases. Nahrung 46: 283–289.
  • [78] Peyron, S., Mouécoucou, J., Frémont, S., Sanchez, C., Gontard, N., 2006. Effects of heat treatment and pectin addition on beta-lactoglobulin allergenicity. J. Agric. Food Chem. 54: 5643–5650.
  • [79] Terheggen-Lagro, S.W., Khouw, I.M., Schaafsma, A., Wauters, E.A., 2002. Safety of a new extensively hydrolysed formula in children with cow's milk protein allergy: a double blind crossover study. BMC Pediatr. 2: 10.
  • [80] Businco, L., Bruno, G., Giampietro, P.G., 1999. Prevention and management of food allergy. Acta Pñdiatr. Suppl. 88: 104–109.
  • [81] Chan, Y.H., Shek, L.P.C., Aw, M., Quak, S.H., Lee, B.W., 2002. Use of hypoallergenic Formula in the prevention of atopic disease among Asian children. J. Paediatr. Child. Health 38: 84–88.
  • [82] Blecker, U., 1997. Role of hydrolyzed formulas in nutritional allergy prevention in infants. South Med. J. 90: 1170–1175.
  • [83] Morgan, F., Bouhallab, S., Mollé, D., Henry, G., Maubois, J.L., Léonil, J., 1998. Lactolation of βlactoglobulin monitored by electrospray ionisation mass spectrometry. Int. Dairy J. 8: 95–98.
  • [84] Taheri-Kafrani, A., Gaudin, J.C., Rabesona, H., Nioi, C., Agarwal, D., Drouet, M., Chobert, J.M., Bordbar, A.K., Haertlft, T., 2009. Effects of heating and glycation of beta-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J. Agric. Food Chem. 57 (11):4974–4982.
  • [85] Hattori, M., Miyakawa, S., Ohama, Y., Kawamura, H., Yoshida, T, To-o, K, Kuriki T, Takahashi K. 2004. Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides. J. Agric. Food Chem. 52: 4546–4553.
  • [86] Wróblewska, B., Jedrychowski, L., 2002. Effect of conjugation of cow milk whey protein with polyethylene glycol on changes in their immunoreactive and allergic properties. Food Agric. Immunol. 14: 155–162.
  • [87] Hattori, M., Nagasawa, K., Ohgata, K., Sone, N., Fukuda, A., Matsuda, H., Takahashi, K., 2000. Reduced immunogenicity of β-lactoglobulin by conjugation with carboxymethyl dextran. Bioconjugate Chem. 11: 84–93.
  • [88] Kobayashi, K., Hirano, A., Ohta, A., Yoshida, T., Takahashi, K., Hattori, M., 2001. Reduced immunogenicity of β-lactoglobulin by conjugation with carboxymethyl dextran differing in molecular weight. J. Agric. Food Chem. 49: 823–831.
  • [89] Bu, G.H., Luo, Y.K., Lu, J., Zhang, Y., 2010. Reduced antigenicity of β-lactoglobulin by conjugation with glucose through controlled Maillard reaction conditions. Food Agric. Immunol. 21: 143– 156.
  • [90] Trujillo, A.J., Capellas, M., Saldo, J., Gervilla, R., Guamis, B., 2002. Application of high hydrostatic pressure on milk and dairy products: a review. Innov. Food Sci. Emerg. Technol. 3: 295– 307.
  • [91] Lanciotti, R., Patrignani, F., Lucci, L., Saracino, P., Guerzoni, M.E., 2007. Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chem 102: 542–550.
  • [92] Peñas, E., Préstamo, G., Baeza, M.L., MartínezMolero, M.I., Gomez, R., 2006. Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int. Dairy J. 16: 831–839.
  • [93] Lametti, S., Transidico, P., Bonomi, F., Vecchio, G., Pittia, P., Rovere, P., Dall'Aglio, G., 1997. Molecular modifications of b-lactoglobulin upon exposure to high pressure. J. Agric. Food Chem. 45: 23–29.
  • [94] Dumay, E.M., Kalichevsky, M.T., Cheftel, J., 1994. High pressure unfolding and aggregation of blactoglobulin and the baroprotective effects of sucrose. J. Agric. Food Chem. 42: 1861–1868.
  • [95] Shriver, S.K., Yang, W.W., 2011. Thermal and nonthermal methods for food allergen control. Food Eng. Rev. 3: 26–43.
  • [96] Chobert, J.M, Briand, L., Dufour, E., Dib, R., Dalgalarrondo, M., Heartle, T., 1997. How to increase β-lactoglobulin susceptibility to peptic hydrolysis. J. Food Biochem. 20: 439−462.
  • [97] Dufour, E., Herve`, G., Haertle, T., 1995. Hydrolysis of blactoglobulin by thermolysin and trypsin under high hydrostatic pressure. Biopolymers 35: 475– 483.
  • [98] Stapelfeldt, H., Petersen, P.H., Kristiansen, K.R., Qvist, K.B., Skibsted, L.H., 1996. Effect of high hydrostatic pressure on the enzymic hydrolysis of beta-lactoglobulin B by trypsin, thermolysin and pepsin. J. Dairy Res. 63 (1): 111–118.
  • [99] Considine, T., Singh, H., Patel, H.A., Creamer, L.K., 2005. Influence of binding of sodium dodecyl sulfate, alltrans retinol and 8-anilino-1- naphthalensulfonate on the high-pressure induced unfolding and aggregation of β- lactoglobulin B. J. Agric. Food Chem. 53: 8010−8018.
  • [100] Funtenberger, S., Dumayn, E., Cheftel, J.C., 1997. High-pressure promotes β-lactoglobulin aggregation through SH/S-S interchange reactions. J. Agric. Food Chem. 45: 912−921.
  • [101] Yang, J., Dunker, K., Powers, J.R., Clark, S., Swanson, B.G., 2001. β-Lactoglobulinmolten globule induced by high pressure. J. Agric. Food Chem. 49: 3236−3324.
  • [102] Bonomi, F., Fiocchi, A., Frøkiaer, H., Gaiaschi, A., Iametti, S., Poiesi, C., Rasmussen, P., Restani, P., Rovere, P., 2003. Reduction of immunoreactivity of bovine beta-lactoglobulin upon combined physical and proteolytic treatment. J. Dairy Res. 70: 51–59.
  • [103] Beran, M., Klubal, R., Molik, P., Strohalm, J., Urban, M., Klaudyova, A.A., Prajzlerova, K., 2009. Influence of high-hydrostatic pressure on tryptic and chymotryptic hydrolysis of milk proteins. High Pressure Res. 29: 23–27.
  • [104] Peñas, E., Snel, H., Floris, R., Prestamo, G., Gomez, R., 2006. High pressure can reduce the antigenicity of bovine whey protein hydrolysates. Int. Dairy J. 16: 969–975.
  • [105] Bianchi-Salvadori, B., Camaschella, P., Cislaghi, S., 1995. Rapid enzymatic method for biotyping and control of lactic acid bacteria used in the production of yogurt and some cheeses. Int. J. Food Microbiol. 27: 253–261.
  • [106] Law, J., Haandrikman, A., 1997. Proteolytic enzymes of lactic acid bacteria. Int. Dairy J. 7: 1– 11.
  • [107] Bertrand-Harb, C., Ivanova, I.V., Dalgalarrondo, M., Haertlle, T., 2003. Evolution of β-lactoglobulin and α-lactalbumin content during yoghurt fermentation. Int. Dairy J. 13: 39–45.
  • [108] Cross, M.L., Stevenson, L.M., Gill, H.S., 2001. Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int. Immunopharmacol. 1: 891–901.
  • [109] Majamaa, H., Isolauri, E., 1997. Probiotics: a novel approach in the management of food allergy. J. Allergy Clin. Immunol. 99: 179–185.
  • [110] Bu, G.H., Luo, Y.K., Zhang, Y., Chen, F.S., 2010. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J. Sci. Food Agric. 90: 2015–2020.
  • [111] Tzvetkova, I., Dalgalarrondo, M., Danova, S., Iliev, I., Ivanova, I., Chobert, J-M., Haertle, T., 2007. Hydrolysis of major dairy proteins by lactic acid bacteria from Bulgarian yogurts. J Food Biochem 31: 680–702.
  • [112] Jedrychowski, L., Wroblewska, B., 1999. Reduction of the antigenicity of whey proteins by lactic acid fermentation. Food Agric. Immunol. 11: 91–99.
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Tuba Erkaya Bu kişi benim

Mustafa Şengül Bu kişi benim

Yayımlanma Tarihi 1 Mart 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 10 Sayı: 1

Kaynak Göster

APA Erkaya, T., & Şengül, M. (2012). İnek Sütü Alerjenleri ve Kontrol Yöntemleri. Akademik Gıda, 10(1), 114-124.
AMA Erkaya T, Şengül M. İnek Sütü Alerjenleri ve Kontrol Yöntemleri. Akademik Gıda. Mart 2012;10(1):114-124.
Chicago Erkaya, Tuba, ve Mustafa Şengül. “İnek Sütü Alerjenleri Ve Kontrol Yöntemleri”. Akademik Gıda 10, sy. 1 (Mart 2012): 114-24.
EndNote Erkaya T, Şengül M (01 Mart 2012) İnek Sütü Alerjenleri ve Kontrol Yöntemleri. Akademik Gıda 10 1 114–124.
IEEE T. Erkaya ve M. Şengül, “İnek Sütü Alerjenleri ve Kontrol Yöntemleri”, Akademik Gıda, c. 10, sy. 1, ss. 114–124, 2012.
ISNAD Erkaya, Tuba - Şengül, Mustafa. “İnek Sütü Alerjenleri Ve Kontrol Yöntemleri”. Akademik Gıda 10/1 (Mart 2012), 114-124.
JAMA Erkaya T, Şengül M. İnek Sütü Alerjenleri ve Kontrol Yöntemleri. Akademik Gıda. 2012;10:114–124.
MLA Erkaya, Tuba ve Mustafa Şengül. “İnek Sütü Alerjenleri Ve Kontrol Yöntemleri”. Akademik Gıda, c. 10, sy. 1, 2012, ss. 114-2.
Vancouver Erkaya T, Şengül M. İnek Sütü Alerjenleri ve Kontrol Yöntemleri. Akademik Gıda. 2012;10(1):114-2.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).