Araştırma Makalesi
BibTex RIS Kaynak Göster

Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications

Yıl 2025, Cilt: 23 Sayı: 2, 111 - 119, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746809

Öz

In this study, the method of Artificial Neural Networks (ANN) was used to model the survival ability of Cryptococcus albidus SAS157 as a biocontrol agent against mold spoilage on Fuji apple fruit. C. albidus (6, 9, or 11 log CFU/mL) and P. expansum (6 log CFU/mL) were inoculated the punctured holes on the surface of the apples and stored at various temperatures (4, 10, 15, and 25°C) and relative humidity (RH) levels (85% or 95%) for 14 days. C. albidus survived the best in apple wounds when the initial inoculum level was 9 log CFU/mL (p<0.05). RH did not significantly change the survival ability of C. albidus (p>0.05). The growth of C. albidus was improved when the temperature was 4°C. A high correlation between actual values was calculated (R2~0.99) for the C. albidus survival within the range of the predicted conditions found by the model. These results indicated the potential of using C. albidus for reducing apple spoilage, with considerations for food safety practices due to its rare association with human infections.

Kaynakça

  • [1] Errampalli, D. (2014). Penicillium expansum (blue mold). In Postharvest decay, Edited by S. Bautista- Banos, Elsevier Science Publishers, 189p.
  • [2] Zhong, L., Carere, J., Lu, Z., Lu, F., Zhou, T. (2018). Patulin in apples and apple-based food products: The burdens and the mitigation strategies. Toxins, 10(11), 475-480.
  • [3] Dukare, A.S., Paul, S., Nambi, V.E., Gupta, R.K., Singh, R., Sharma, K., Vishwakarma, R.K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruit: a review. Critical Reviews in Food Science and Nutrition, 59, 1498-1513.
  • [4] Delgado-Adámez, J., Fuentes-Pérez, G., Velardo-Micharet, B., González-Gómez, D. (2017). Application of microbial antagonists in combination with sodium bicarbonate to control postharvest diseases of sweet cherries. Acta Horticulture, 1161, 529-534.
  • [5] Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., Jijakli, M.H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29.
  • [6] El-Tarabily, K.A., Sivasithamparam, K. (2006). Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience, 47, 25–35.
  • [7] Rosa-Magri, M.M., Tauk-Tornisielo, S.M., Ceccato-Antonini, S.R. (2011). Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Brazilian Archives of Biology and Technology, 54, 1-5.
  • [8] Izgü, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1, 3-glucanase. Bioscience, Biotechnology, and Biochemistry, 68, 685-693.
  • [9] Etebarian, H.R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. Journal of Agricultural Science and Technology, 8, 243-250.
  • [10] Chand-Goyal, T., Spotts, R.A. (1996). Postharvest biological control of blue mold of apple and brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides. Biological Control, 6(2), 253-259.
  • [11] Fan, Q., Tian, S. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350.
  • [12] Tournas, V.H., Katsoudas, E.J. (2019). Effect of CaCl2 and various wild yeasts from plant origin on controlling Penicillium expansum postharvest decays in Golden Delicious apples. Microbiology Insights, 12.
  • [13] Türkoğlu, S., Zengin, A., Ozturk, M., Çağrı-Mehmetoğlu, A. (2022). Mathematical modelling of biocontrol effect of Cryptococcus albidus on the growth of Penicillium expansum on Fuji apple fruits. Biological Control, 170, 104908.
  • [14] Mukherjee, A., Verma, J.P., Gaurav, A.K., Chouhan, G.K., Patel, J.S., Hesham, A.E.L. (2020). Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture. Applied Microbiology and Biotechnology, 104, 1497-1510.
  • [15] Huang, Y., Kangas, L. J., Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical reviews in Food Science and Nutrition, 47(2), 113-126.
  • [16] Uca, E., Güleç, H. A. (2024). Process optimization for the extraction of phenolic compounds from pomegranate peels: Response surface methodology-desirability function and artificial neural network-genetic algorithm. Akademik Gıda, 22(1), 23-33.
  • [17] Augustinus, B., Sun, Y., Beuchat, C., Schaffner, U., Müller‐Schärer, H. (2020). Predicting impact of a biocontrol agent: integrating distribution modeling with climate‐dependent vital rates. Ecological Applications, 30(1), e02003.
  • [18] Vlajkov, V., Anđelić, S., Pajčin, I., Grahovac, M., Budakov, D., Jokić, A., Grahovac, J. (2022). Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms, 10(6), 1165.
  • [19] Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz, P., Fontana, A., Strub, C., Schorr-Galindo, S. (2021). New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins, 13(6), 397.
  • [20] Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research National Bureau Standards, Sect A, Physics Chemistry, 81(1), 89-95.
  • [21] Drfungus (2023). Cryptococcus albidus. https://drfungus.org/knowledge-base/cryptococcus-albidus/
  • [22] Beale, M.H., Hagan, M.T., Demuth, H.B. (2021). Deep Learning Toolbox User’s Guide. The MathWorks Inc.
  • [23] Lima, G., De Curtis, F., Castoria, R., De, Cicco, V. (2003). Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions. European Journal of Plant Pathology, 109, 341-349.
  • [24] Spadaro, D., Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39-49.
  • [25] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
  • [26] Mohanty, S., Behera, H. S. (2020). Artificial neural network based crop yield prediction: A review. International Journal of Engineering and Advanced Technology, 9(3), 2466-2473.
  • [27] Kim, J., Kim, H. (2018). Application of artificial neural networks for predicting microbial growth in food preservation. Food Microbiology, 72, 116–123.
  • [28] Oliveira, V. F. D., Funari, A. P., Taborda, M., Magri, A. S. G. K., Levin, A. S., Magri, M. M. C. (2023). Cutaneous Naganishia albida (Cryptococcus albidus) infection: a case report and literature review. Revista do Instituto de Medicina Tropical de São Paulo, 65, e60.

Elma Üzerindeki Yaralanmış Bölgelerde Cryptococcus albidus’un Canlı Kalma Oranının Matematiksel Modelleme ile Belirlenmesi

Yıl 2025, Cilt: 23 Sayı: 2, 111 - 119, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746809

Öz

Bu çalışmada, küf gelişimine karşı biyolojik kontrol aracı olan Cryptococcus albidus SAS157’nin Fuji elmalarında canlı kalma yeteneğini modellemek için Yapay Sinir Ağları (YSA) yöntemi kullanılmıştır. C. albidus (6, 9 ve 11 log CFU/mL) ve Pennicillum expansum (6 log CFU/mL) elmaların yüzeyinde açılan deliklere aşılanarak çeşitli sıcaklık (4, 10, 15 ve 25°C) ve bağıl nem (%85 veya %95) koşullarında 14 gün boyunca depolanmıştır. Elde edilen sonuçlar, C. albidus’un elma yaralarında başlangıç inokulum seviyesi 9 log CFU/mL olduğunda en iyi canlı kalma performansını gösterdiğini ortaya koymuştur (p<0.05). Ayrıca, farklı nem seviyelerinin C. albidus’un canlı kalma yeteneği üzerinde önemli bir etkisi olmadığı belirlenmiştir (p>0.05). Bununla birlikte, depolama sıcaklığının 4°C olması, C. albidus'un çoğalmasını anlamlı şekilde artırmıştı (p<0.05). Model tarafından tahmin edilen koşullar aralığında C. albidus’un canlı kalmasına ait deneysel sonuçlar arasında yüksek bir korelasyon hesaplanmıştır (R2~0.99). Bu bulgular, elma çürümelerinin azaltılmasında C. albidus’un potansiyelini vurgulamakta, ancak insan enfeksiyonlarıyla nadir ilişkisi nedeniyle gıda güvenliği önlemlerine dikkat edilmesi gerektiğini önermektedir.

Kaynakça

  • [1] Errampalli, D. (2014). Penicillium expansum (blue mold). In Postharvest decay, Edited by S. Bautista- Banos, Elsevier Science Publishers, 189p.
  • [2] Zhong, L., Carere, J., Lu, Z., Lu, F., Zhou, T. (2018). Patulin in apples and apple-based food products: The burdens and the mitigation strategies. Toxins, 10(11), 475-480.
  • [3] Dukare, A.S., Paul, S., Nambi, V.E., Gupta, R.K., Singh, R., Sharma, K., Vishwakarma, R.K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruit: a review. Critical Reviews in Food Science and Nutrition, 59, 1498-1513.
  • [4] Delgado-Adámez, J., Fuentes-Pérez, G., Velardo-Micharet, B., González-Gómez, D. (2017). Application of microbial antagonists in combination with sodium bicarbonate to control postharvest diseases of sweet cherries. Acta Horticulture, 1161, 529-534.
  • [5] Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., Jijakli, M.H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29.
  • [6] El-Tarabily, K.A., Sivasithamparam, K. (2006). Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience, 47, 25–35.
  • [7] Rosa-Magri, M.M., Tauk-Tornisielo, S.M., Ceccato-Antonini, S.R. (2011). Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Brazilian Archives of Biology and Technology, 54, 1-5.
  • [8] Izgü, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1, 3-glucanase. Bioscience, Biotechnology, and Biochemistry, 68, 685-693.
  • [9] Etebarian, H.R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. Journal of Agricultural Science and Technology, 8, 243-250.
  • [10] Chand-Goyal, T., Spotts, R.A. (1996). Postharvest biological control of blue mold of apple and brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides. Biological Control, 6(2), 253-259.
  • [11] Fan, Q., Tian, S. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350.
  • [12] Tournas, V.H., Katsoudas, E.J. (2019). Effect of CaCl2 and various wild yeasts from plant origin on controlling Penicillium expansum postharvest decays in Golden Delicious apples. Microbiology Insights, 12.
  • [13] Türkoğlu, S., Zengin, A., Ozturk, M., Çağrı-Mehmetoğlu, A. (2022). Mathematical modelling of biocontrol effect of Cryptococcus albidus on the growth of Penicillium expansum on Fuji apple fruits. Biological Control, 170, 104908.
  • [14] Mukherjee, A., Verma, J.P., Gaurav, A.K., Chouhan, G.K., Patel, J.S., Hesham, A.E.L. (2020). Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture. Applied Microbiology and Biotechnology, 104, 1497-1510.
  • [15] Huang, Y., Kangas, L. J., Rasco, B. A. (2007). Applications of artificial neural networks (ANNs) in food science. Critical reviews in Food Science and Nutrition, 47(2), 113-126.
  • [16] Uca, E., Güleç, H. A. (2024). Process optimization for the extraction of phenolic compounds from pomegranate peels: Response surface methodology-desirability function and artificial neural network-genetic algorithm. Akademik Gıda, 22(1), 23-33.
  • [17] Augustinus, B., Sun, Y., Beuchat, C., Schaffner, U., Müller‐Schärer, H. (2020). Predicting impact of a biocontrol agent: integrating distribution modeling with climate‐dependent vital rates. Ecological Applications, 30(1), e02003.
  • [18] Vlajkov, V., Anđelić, S., Pajčin, I., Grahovac, M., Budakov, D., Jokić, A., Grahovac, J. (2022). Medium for the production of Bacillus-based biocontrol agent effective against aflatoxigenic Aspergillus flavus: Dual approach for modelling and optimization. Microorganisms, 10(6), 1165.
  • [19] Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz, P., Fontana, A., Strub, C., Schorr-Galindo, S. (2021). New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins, 13(6), 397.
  • [20] Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research National Bureau Standards, Sect A, Physics Chemistry, 81(1), 89-95.
  • [21] Drfungus (2023). Cryptococcus albidus. https://drfungus.org/knowledge-base/cryptococcus-albidus/
  • [22] Beale, M.H., Hagan, M.T., Demuth, H.B. (2021). Deep Learning Toolbox User’s Guide. The MathWorks Inc.
  • [23] Lima, G., De Curtis, F., Castoria, R., De, Cicco, V. (2003). Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions. European Journal of Plant Pathology, 109, 341-349.
  • [24] Spadaro, D., Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39-49.
  • [25] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
  • [26] Mohanty, S., Behera, H. S. (2020). Artificial neural network based crop yield prediction: A review. International Journal of Engineering and Advanced Technology, 9(3), 2466-2473.
  • [27] Kim, J., Kim, H. (2018). Application of artificial neural networks for predicting microbial growth in food preservation. Food Microbiology, 72, 116–123.
  • [28] Oliveira, V. F. D., Funari, A. P., Taborda, M., Magri, A. S. G. K., Levin, A. S., Magri, M. M. C. (2023). Cutaneous Naganishia albida (Cryptococcus albidus) infection: a case report and literature review. Revista do Instituto de Medicina Tropical de São Paulo, 65, e60.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Gıda Mikrobiyolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Serap Türkoğlu Bu kişi benim 0000-0002-9862-2208

Adem Zengin Bu kişi benim 0000-0001-9317-949X

Arzu Çağrı Mehmetoğlu 0000-0001-6967-7288

Yayımlanma Tarihi 20 Temmuz 2025
Gönderilme Tarihi 13 Ocak 2024
Kabul Tarihi 7 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 23 Sayı: 2

Kaynak Göster

APA Türkoğlu, S., Zengin, A., & Çağrı Mehmetoğlu, A. (2025). Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications. Akademik Gıda, 23(2), 111-119. https://doi.org/10.24323/akademik-gida.1746809
AMA Türkoğlu S, Zengin A, Çağrı Mehmetoğlu A. Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications. Akademik Gıda. Temmuz 2025;23(2):111-119. doi:10.24323/akademik-gida.1746809
Chicago Türkoğlu, Serap, Adem Zengin, ve Arzu Çağrı Mehmetoğlu. “Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications”. Akademik Gıda 23, sy. 2 (Temmuz 2025): 111-19. https://doi.org/10.24323/akademik-gida.1746809.
EndNote Türkoğlu S, Zengin A, Çağrı Mehmetoğlu A (01 Temmuz 2025) Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications. Akademik Gıda 23 2 111–119.
IEEE S. Türkoğlu, A. Zengin, ve A. Çağrı Mehmetoğlu, “Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications”, Akademik Gıda, c. 23, sy. 2, ss. 111–119, 2025, doi: 10.24323/akademik-gida.1746809.
ISNAD Türkoğlu, Serap vd. “Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications”. Akademik Gıda 23/2 (Temmuz2025), 111-119. https://doi.org/10.24323/akademik-gida.1746809.
JAMA Türkoğlu S, Zengin A, Çağrı Mehmetoğlu A. Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications. Akademik Gıda. 2025;23:111–119.
MLA Türkoğlu, Serap vd. “Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications”. Akademik Gıda, c. 23, sy. 2, 2025, ss. 111-9, doi:10.24323/akademik-gida.1746809.
Vancouver Türkoğlu S, Zengin A, Çağrı Mehmetoğlu A. Mathematical Modelling on Survival of Cryptococcus albidus in Fuji Apple Wounds for Biocontrol Applications. Akademik Gıda. 2025;23(2):111-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Akademik Gıda has been published by Sidas Medya Ltd. Sti. (Sidas Media Agency Advertisement Consultation Ltd.) since 2003.