Araştırma Makalesi
BibTex RIS Kaynak Göster

Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi

Yıl 2016, Cilt: 16 Sayı: 3, 734 - 746, 31.12.2016

Öz

Bu çalışmada, nişastayla konsolidasyon yöntemi kullanılarak hazırlanan gözenekli kristobalit esaslı seramiklerin göreceli olarak düşük sıcaklıkta üretilmiştir. Başlangıç tozu olarak Si3N4 tozu, sinterleme ilavesi olarak ise boraksdekahidrat ile ticari bir kaolen kullanılmıştır. Gözenek oluşturucu olarak ise mısır nişastası kullanılmıştır. Sinterleme koşullarına bağlı olarak (1000-1200C’de 1 saat sinterleme) oldukça düşük yığınsal yoğunluk (0,83-1,08 g/cm3) ve yüksek gözenekliliğe sahip (%53-73) seramiklerin üretildiği belirlenmiştir. Sinterleme hava atmosferinde gerçekleştirilmiş ve uygulanan ısıl işlem esnasında Si3N4 tozunun oksidasyona uğraması sonucunda yapıda ana faz olarak kristobalit fazının oluştuğu XRD analizleriyle belirlenmiştir. Mikroyapı incelemelerinde nişastayla konsolidasyon yöntemiyle üretilen seramiklerin yüksek oranda gözeneğe sahip olduğu ve yapıda ortalama 80-100 μm ile birkaç μm ile sınırlı iki farklı boyut dağılımına sahip gözeneğin oluştuğu belirlenmiştir.

Kaynakça

  • Adachi, T., Osaki, M., Araki, W., & Kwon, S.-C., 2008. Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia, 56(9), 2101-2109.
  • Agrawal, P., & Sun, C.T., 2004. Fracture in metal–ceramic composites. Composites Science and Technology, 64(9), 1167-1178.
  • Ahmad, Z., Sarwar, M., & Mark, J.E., 1997. Chemically bonded silica–polymer composites from linear andbranched polyamides in a sol–gel process. Journal of Materials Chemistry, 7(2), 259-263.
  • Alves, H., Tarı, G., Fonseca, A., & Ferreira, J., 1998. Processing of porous cordierite bodies by starch consolidation. Materials Research Bulletin, 33(10), 1439-1448.
  • Arslan, G., & Kalemtas, A., 2005. Ceramic molten metal filters. Seramik Turkiye, 7, 138-142.
  • Bose, S., & Tarafder, S., 2012. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomaterialia, 8(4), 1401-1421.
  • Coldea, A., Swain, M. V., & Thiel, N., 2013. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dental Materials, 29(4), 419-426.
  • Daehn, G. S., & Breslin, M.C., 2006. Co-continuous composite materials for friction and braking applications. JOM, 58(11), 87-91.
  • Dai, W., Yu, J., Liu, Z., Wang, Y., Song, Y., Lyu, J., Bai, H., Nishimura, K., & Jiang, N., 2015. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Composites Part A: Applied Science and Manufacturing, 76, 73-81.
  • Deville, S., 2008. Freeze‐casting of porous ceramics: a review of current achievements and issues. Advanced Engineering Materials, 10(3), 155-169.
  • Ding, S., Zeng, Y.-P., & Jiang, D., 2007. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Materials Letters, 61(11), 2277-2280.
  • Dittmann, J., Koos, E., & Willenbacher, N., 2013. Ceramic capillary suspensions: Novel processing route for macroporous ceramic materials. Journal of the American Ceramic Society, 96(2), 391-397.
  • Eom, J.-H., Kim, Y.-W., & Raju, S., 2013. Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 1(3), 220-242.
  • Galán-Arboledas, R. J., Cotes, T., Martínez, C., & Bueno, S., 2016. Influence of waste addition on the porosity of clay-based ceramic membranes. Desalination and Water Treatment, 57(6), 2633-2639.
  • Gao, F., 2004. Clay/polymer composites: the story. Materials today, 7(11), 50-55.
  • Gao, Z., & Zhao, L., 2015. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Materials & Design, 66, 176-182.
  • Giang, T., Park, J., Cho, I., Ko, Y., & Kim, J., 2013. Effect of backbone moiety in epoxies on thermal conductivity of epoxy/alumina composite. Polymer Composites, 34(4), 468-476.
  • Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H., 2014. Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. Journal of Porous Materials, 21(1), 15-21.
  • Gregorová, E., Pabst, W., Uhlířová, T., Nečina, V., Veselý, M., & Sedlářová, I., 2016. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour. Journal of the European Ceramic Society, 36(1), 109-120.
  • Guzman, I.Y., 2003. Certain principles of formation of porous ceramic structures. Properties and applications (a review). Glass and Ceramics, 60(9-10), 280-283.
  • Hammel, E., Ighodaro, O.-R., & Okoli, O., 2014. Processing and properties of advanced porous ceramics: an application based review. Ceramics International, 40(10), 15351-15370.
  • Han, G. W., Feng, D., Yin, M., & Ye, W.J., 1997. Ceramic/aluminum co-continuous composite synthesized by reaction accelerated melt infiltration. Materials Science and Engineering: A, 225(1), 204-207.
  • Hashin, Z., 1983. Analysis of composite materials—a survey. Journal of Applied Mechanics, 50(3), 481-505.
  • Hong, C. Q., Zhang, X. H., Han, J. C., & He, X.D., 2005. Numerical simulation on thermal shock resistance of TiB2-Cu interpenetrating phase composites. Materials Science Forum, 475-479, 1551-1554.
  • Hu, Y., Du, G., & Chen, N., 2016. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Composites Science and Technology, 124, 36-43.
  • Huang, X., Jiang, P., & Tanaka, T., 2011. A review of dielectric polymer composites with high thermal conductivity. IEEE Electrical Insulation Magazine, 27(4), 8-16.
  • Kalemtas, A., Topates, G., Özcoban, H., Mandal, H., Kara, F., & Janssen, R., 2013. Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering & starch addition. Journal of the European Ceramic Society, 33(9), 1507-1515.
  • Kiehle, A., Heung, L., Gielisse, P., & Rockett, T., 1975. Oxidation Behavior of Hot‐Pressed Si3N4. Journal of the American Ceramic Society, 58(1‐2), 17-20.
  • Konegger, T., Patidar, R., & Bordia, R.K., 2015. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors. Journal of the European Ceramic Society, 35(9), 2679-2683.
  • Kumar, B. M., & Kim, Y.-W., 2010. Processing of polysiloxane-derived porous ceramics: a review. Science and Technology of Advanced Materials, 11, 044303.
  • Kusunose, T., Yagi, T., Firoz, S. H., & Sekino, T., 2013. Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity. Journal of Materials Chemistry A, 1(10), 3440-3445.
  • Kwon, S.-C., Adachi, T., & Araki, W., 2008. Temperature dependence of fracture toughness of silica/epoxy composites: Related to microstructure of nano-and micro-particles packing. Composites Part B: Engineering, 39(5), 773-781.
  • Kwon, S.-C., Adachi, T., Araki, W., & Yamaji, A., 2008. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Composites Part B: Engineering, 39(4), 740-746.
  • Lakshmikandhan, T., Chandramohan, A., Sethuraman, K., & Alagar, M., 2016. Development and characterization of functionalized Al2O3 and TiO2-reinforced polybenzoxazine nanocomposites. Designed Monomers and Polymers, 19(1), 67-76.
  • Lee, D. W., & Yoo, B.R., 2016. Advanced silica/polymer composites: Materials and applications. Journal of Industrial and Engineering Chemistry, 38, 1-12.
  • Lee, E. S., Lee, S. M., Shanefield, D. J., & Cannon, W. R., 2008. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. Journal of the American Ceramic Society, 91(4), 1169-1174.
  • Lemos, A., & Ferreira, J., 2000. Porous bioactive calcium carbonate implants processed by starch consolidation. Materials Science and Engineering: C, 11(1), 35-40.
  • Leventis, N., Palczer, A., McCorkle, L., Zhang, G., & Sotiriou-Leventis, C., 2005. Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying. Journal of sol-gel science and technology, 35(2), 99-105.
  • Li, S., Xiong, D., Liu, M., Bai, S., & Zhao, X., 2014. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceramics International, 40(5), 7539-7544.
  • Li, T.-L., & Hsu, S. L.-C., 2010. Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. The Journal of Physical Chemistry B, 114(20), 6825-6829.
  • Li, T.L., & Hsu, S.L.C., 2011. Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites. Journal of Applied Polymer Science, 121(2), 916-922.
  • Lii, D.-F., Huang, J.-L., & Chang, S.-T., 2002. The mechanical properties of AlN/Al composites manufactured by squeeze casting. Journal of the European Ceramic Society, 22(2), 253-261.
  • Loh, Q.L., & Choong, C., 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502.
  • Lu, Y., Li, J., Yang, J., & Li, X., 2016. The Fabrication and Properties of the Squeeze-Cast TiN/Al Composites. Materials and Manufacturing Processes, 31(10), 1306-1310.
  • Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., & Bao, C., 2010. The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting. Materials Science and Engineering: A, 527(23), 6289-6299.
  • Lyckfeldt, O., & Ferreira, J., 1998. Processing of porous ceramics by ‘starch consolidation’. Journal of the European Ceramic Society, 18(2), 131-140.
  • Majhi, M., Choudhary, R., & Maji, P., 2016. TiO2 reinforced polymeric nanocomposites of HCl‐doped polyaniline and their properties. Polymer Composites, DOI: 10.1002/pc.23994.
  • Manfredi, D., Pavese, M., Biamino, S., Antonini, A., Fino, P., & Badini, C., 2010. Microstructure and mechanical properties of co-continuous metal/ceramic composites obtained from Reactive Metal Penetration of commercial aluminium alloys into cordierite. Composites Part A: Applied Science and Manufacturing, 41(5), 639-645.
  • Maurath, J., Dittmann, J., Schultz, N., & Willenbacher, N., 2015. Fabrication of highly porous glass filters using capillary suspension processing. Separation and Purification Technology, 149, 470-478.
  • Metsger, D. S., Driskell, T., & Paulsrud, J., 1982. Tricalcium phosphate ceramic-a resorbable bone implant: review and current status.The Journal of the American Dental Association, 105(6), 1035-1038.
  • Mohanta, K., Kumar, A., Parkash, O., & Kumar, D., 2014. Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. Journal of the European Ceramic Society, 34(10), 2401-2412.
  • Mujeebu, M. A., Abdullah, M., Bakar, M. A., Mohamad, A., & Abdullah, M., 2009. Applications of porous media combustion technology–a review. Applied Energy, 86(9), 1365-1375.
  • Naviroj, M., Miller, S., Colombo, P., & Faber, K., 2015. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232.
  • Nettleship, I., 1996. Applications of porous ceramics. Key Engineering Materials, 122-124, 305-324.
  • Novais, R. M., Seabra, M., & Labrincha, J., 2014. Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. Ceramics International, 40(8), 11637-11648.
  • Ohji, T., & Fukushima, M., 2012. Macro-porous ceramics: processing and properties. International Materials Reviews, 57(2), 115-131.
  • Okada, K., Isobe, T., Katsumata, K.-I., Kameshima, Y., Nakajima, A., & MacKenzie, K.J., 2011. Porous ceramics mimicking nature-preparation and properties of microstructures with unidirectionally oriented pores. Science and Technology of Advanced Materials, 12, 064701.
  • Park, J. S., An, Y. J., Shin, K., Han, J. H., & Lee, C.S., 2015. Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation. RSC Advances, 5(58), 46989-46996.
  • Park, S.-J., Heo, G.-Y., Choi, K.-E., Oh, S.-Y., & Seo, M.-K., 2011. Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites. Carbon Letters, 12(1), 53-56.
  • Pavese, M., Fino, P., Valle, M., & Badini, C., 2006. Preparation of C4 ceramic/metal composites by reactive metal penetration of commercial ceramics. Composites Science and Technology, 66(2), 350-356.
  • Pavese, M., Valle, M., & Badini, C., 2007. Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites. Journal of the European Ceramic Society, 27(1), 131-141.
  • Pezzotti, G., Kamada, I., & Miki, S., 2000. Thermal conductivity of AlN/polystyrene interpenetrating networks. Journal of the European Ceramic Society, 20(8), 1197-1203.
  • Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., & Mascia, L., 2005. Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer, 46(23), 10506-10516.
  • Rittersma, Z., 2002. Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sensors and Actuators A: Physical, 96(2), 196-210.
  • Rodríguez‐Lorenzo, L., Vallet‐Regí, M., & Ferreira, J., 2002. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. Journal of biomedical materials research, 60(2), 232-240.
  • Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., & Watari, K., 2010. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. Journal of Materials Chemistry, 20(14), 2749-2752.
  • Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J., 2016. Gas permeability of ice-templated, unidirectional porous ceramics. Science and Technology of Advanced Materials (just-accepted), 1-29.
  • Studart, A. R., Gonzenbach, U. T., Tervoort, E., & Gauckler, L.J., 2006. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, 89(6), 1771-1789.
  • Suzuki, N., Kiba, S., & Yamauchi, Y., 2011. Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Materials Letters, 65(3), 544-547.
  • Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., & Franzese, S., 2001. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials, 22(11), 1365-1370.
  • Tianchi, W., Dangsheng, X., & Tianle, Z., 2010. Preparation and wear behavior ofcarbon/epoxy resin composites with an interpenetrating network structure derived from natural sponge. Carbon, 48(9), 2435-2441.
  • Tilbrook, M., Moon, R., & Hoffman, M., 2005. On the mechanical properties of alumina–epoxy composites with an interpenetrating network structure. Materials Science and Engineering: A, 393(1), 170-178.
  • Topateş, G., Bilgiç, O., Kalemtaş, A., Aydın, M. T. A., & Özey, N., 2016. Ağ Yapılı Kompozit Malzemelerin Üretiminde Kullanılmak Üzere Gözenekli Si3N4 Seramiklerin Üretimi. Putech & Composites, 3, 23-32.
  • Vitorino, N., Freitas, C., Ribeiro, M., Abrantes, J., & Frade, J., 2015. Porous hollow tubes processed by extrusion of ceramic emulsions. Applied Clay Science, 105, 60-65.
  • Wan, W., Feng, Y., Yang, J., Xu, S., & Qiu, T., 2015. Preparation of mesoporous silica ceramics with relatively high strength from industrial wastes by low-toxic aqueous gel-casting. Journal of the European Ceramic Society, 35(7), 2163-2170.
  • Wang, X., Li, J. T., Xie, M. Y., Qu, L. J., Zhang, P., & Li, X.L., 2015. Structure, mechanical property and corrosion behaviors of (HA + β-TCP)/Mg–5Sn composite with interpenetrating networks. Materials Science and Engineering: C, 56, 386-392.
  • Werner, J., Besser, B., Brandes, C., Kroll, S., & Rezwan, K., 2014. Production of ceramic membranes with different pore sizes for virus retention. Journal of Water Process Engineering, 4, 201-211.
  • Wiecinska, P., & Bachonko, M., 2016. Processing of porous ceramics from highly concentrated suspensions by foaming, in situ polymerization and burn-out of polylactide fibers. Ceramics International, 42(13), 15057-15064.
  • Wu, C. M. L., & Han, G.W., 2007. Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration. Materials Characterization, 58(5), 416-422.
  • Yao, D., Xia, Y., Zeng, Y.-P., Zuo, K.-H., & Jiang, D., 2012. Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 68, 75-77.
  • Yu, H., Li, L., Kido, T., Xi, G., Xu, G., & Guo, F., 2012. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. Journal of Applied Polymer Science, 124(1), 669-677.
  • Zhou, T., Wang, X., Liu, X., & Xiong, D., 2010. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 48(4), 1171-1176.
  • Zhu, B., Wang, J., Ma, J., Wu, J., Yung, K., & Xie, C., 2013. Preparation and properties of aluminum nitride‐filled epoxy composites: Effect of filler characteristics and composite processing conditions. Journal of Applied Polymer Science, 127(5), 3456-3466.
Yıl 2016, Cilt: 16 Sayı: 3, 734 - 746, 31.12.2016

Öz

Kaynakça

  • Adachi, T., Osaki, M., Araki, W., & Kwon, S.-C., 2008. Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia, 56(9), 2101-2109.
  • Agrawal, P., & Sun, C.T., 2004. Fracture in metal–ceramic composites. Composites Science and Technology, 64(9), 1167-1178.
  • Ahmad, Z., Sarwar, M., & Mark, J.E., 1997. Chemically bonded silica–polymer composites from linear andbranched polyamides in a sol–gel process. Journal of Materials Chemistry, 7(2), 259-263.
  • Alves, H., Tarı, G., Fonseca, A., & Ferreira, J., 1998. Processing of porous cordierite bodies by starch consolidation. Materials Research Bulletin, 33(10), 1439-1448.
  • Arslan, G., & Kalemtas, A., 2005. Ceramic molten metal filters. Seramik Turkiye, 7, 138-142.
  • Bose, S., & Tarafder, S., 2012. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomaterialia, 8(4), 1401-1421.
  • Coldea, A., Swain, M. V., & Thiel, N., 2013. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dental Materials, 29(4), 419-426.
  • Daehn, G. S., & Breslin, M.C., 2006. Co-continuous composite materials for friction and braking applications. JOM, 58(11), 87-91.
  • Dai, W., Yu, J., Liu, Z., Wang, Y., Song, Y., Lyu, J., Bai, H., Nishimura, K., & Jiang, N., 2015. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Composites Part A: Applied Science and Manufacturing, 76, 73-81.
  • Deville, S., 2008. Freeze‐casting of porous ceramics: a review of current achievements and issues. Advanced Engineering Materials, 10(3), 155-169.
  • Ding, S., Zeng, Y.-P., & Jiang, D., 2007. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Materials Letters, 61(11), 2277-2280.
  • Dittmann, J., Koos, E., & Willenbacher, N., 2013. Ceramic capillary suspensions: Novel processing route for macroporous ceramic materials. Journal of the American Ceramic Society, 96(2), 391-397.
  • Eom, J.-H., Kim, Y.-W., & Raju, S., 2013. Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 1(3), 220-242.
  • Galán-Arboledas, R. J., Cotes, T., Martínez, C., & Bueno, S., 2016. Influence of waste addition on the porosity of clay-based ceramic membranes. Desalination and Water Treatment, 57(6), 2633-2639.
  • Gao, F., 2004. Clay/polymer composites: the story. Materials today, 7(11), 50-55.
  • Gao, Z., & Zhao, L., 2015. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Materials & Design, 66, 176-182.
  • Giang, T., Park, J., Cho, I., Ko, Y., & Kim, J., 2013. Effect of backbone moiety in epoxies on thermal conductivity of epoxy/alumina composite. Polymer Composites, 34(4), 468-476.
  • Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H., 2014. Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. Journal of Porous Materials, 21(1), 15-21.
  • Gregorová, E., Pabst, W., Uhlířová, T., Nečina, V., Veselý, M., & Sedlářová, I., 2016. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour. Journal of the European Ceramic Society, 36(1), 109-120.
  • Guzman, I.Y., 2003. Certain principles of formation of porous ceramic structures. Properties and applications (a review). Glass and Ceramics, 60(9-10), 280-283.
  • Hammel, E., Ighodaro, O.-R., & Okoli, O., 2014. Processing and properties of advanced porous ceramics: an application based review. Ceramics International, 40(10), 15351-15370.
  • Han, G. W., Feng, D., Yin, M., & Ye, W.J., 1997. Ceramic/aluminum co-continuous composite synthesized by reaction accelerated melt infiltration. Materials Science and Engineering: A, 225(1), 204-207.
  • Hashin, Z., 1983. Analysis of composite materials—a survey. Journal of Applied Mechanics, 50(3), 481-505.
  • Hong, C. Q., Zhang, X. H., Han, J. C., & He, X.D., 2005. Numerical simulation on thermal shock resistance of TiB2-Cu interpenetrating phase composites. Materials Science Forum, 475-479, 1551-1554.
  • Hu, Y., Du, G., & Chen, N., 2016. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Composites Science and Technology, 124, 36-43.
  • Huang, X., Jiang, P., & Tanaka, T., 2011. A review of dielectric polymer composites with high thermal conductivity. IEEE Electrical Insulation Magazine, 27(4), 8-16.
  • Kalemtas, A., Topates, G., Özcoban, H., Mandal, H., Kara, F., & Janssen, R., 2013. Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering & starch addition. Journal of the European Ceramic Society, 33(9), 1507-1515.
  • Kiehle, A., Heung, L., Gielisse, P., & Rockett, T., 1975. Oxidation Behavior of Hot‐Pressed Si3N4. Journal of the American Ceramic Society, 58(1‐2), 17-20.
  • Konegger, T., Patidar, R., & Bordia, R.K., 2015. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors. Journal of the European Ceramic Society, 35(9), 2679-2683.
  • Kumar, B. M., & Kim, Y.-W., 2010. Processing of polysiloxane-derived porous ceramics: a review. Science and Technology of Advanced Materials, 11, 044303.
  • Kusunose, T., Yagi, T., Firoz, S. H., & Sekino, T., 2013. Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity. Journal of Materials Chemistry A, 1(10), 3440-3445.
  • Kwon, S.-C., Adachi, T., & Araki, W., 2008. Temperature dependence of fracture toughness of silica/epoxy composites: Related to microstructure of nano-and micro-particles packing. Composites Part B: Engineering, 39(5), 773-781.
  • Kwon, S.-C., Adachi, T., Araki, W., & Yamaji, A., 2008. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Composites Part B: Engineering, 39(4), 740-746.
  • Lakshmikandhan, T., Chandramohan, A., Sethuraman, K., & Alagar, M., 2016. Development and characterization of functionalized Al2O3 and TiO2-reinforced polybenzoxazine nanocomposites. Designed Monomers and Polymers, 19(1), 67-76.
  • Lee, D. W., & Yoo, B.R., 2016. Advanced silica/polymer composites: Materials and applications. Journal of Industrial and Engineering Chemistry, 38, 1-12.
  • Lee, E. S., Lee, S. M., Shanefield, D. J., & Cannon, W. R., 2008. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. Journal of the American Ceramic Society, 91(4), 1169-1174.
  • Lemos, A., & Ferreira, J., 2000. Porous bioactive calcium carbonate implants processed by starch consolidation. Materials Science and Engineering: C, 11(1), 35-40.
  • Leventis, N., Palczer, A., McCorkle, L., Zhang, G., & Sotiriou-Leventis, C., 2005. Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying. Journal of sol-gel science and technology, 35(2), 99-105.
  • Li, S., Xiong, D., Liu, M., Bai, S., & Zhao, X., 2014. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceramics International, 40(5), 7539-7544.
  • Li, T.-L., & Hsu, S. L.-C., 2010. Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. The Journal of Physical Chemistry B, 114(20), 6825-6829.
  • Li, T.L., & Hsu, S.L.C., 2011. Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites. Journal of Applied Polymer Science, 121(2), 916-922.
  • Lii, D.-F., Huang, J.-L., & Chang, S.-T., 2002. The mechanical properties of AlN/Al composites manufactured by squeeze casting. Journal of the European Ceramic Society, 22(2), 253-261.
  • Loh, Q.L., & Choong, C., 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502.
  • Lu, Y., Li, J., Yang, J., & Li, X., 2016. The Fabrication and Properties of the Squeeze-Cast TiN/Al Composites. Materials and Manufacturing Processes, 31(10), 1306-1310.
  • Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., & Bao, C., 2010. The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting. Materials Science and Engineering: A, 527(23), 6289-6299.
  • Lyckfeldt, O., & Ferreira, J., 1998. Processing of porous ceramics by ‘starch consolidation’. Journal of the European Ceramic Society, 18(2), 131-140.
  • Majhi, M., Choudhary, R., & Maji, P., 2016. TiO2 reinforced polymeric nanocomposites of HCl‐doped polyaniline and their properties. Polymer Composites, DOI: 10.1002/pc.23994.
  • Manfredi, D., Pavese, M., Biamino, S., Antonini, A., Fino, P., & Badini, C., 2010. Microstructure and mechanical properties of co-continuous metal/ceramic composites obtained from Reactive Metal Penetration of commercial aluminium alloys into cordierite. Composites Part A: Applied Science and Manufacturing, 41(5), 639-645.
  • Maurath, J., Dittmann, J., Schultz, N., & Willenbacher, N., 2015. Fabrication of highly porous glass filters using capillary suspension processing. Separation and Purification Technology, 149, 470-478.
  • Metsger, D. S., Driskell, T., & Paulsrud, J., 1982. Tricalcium phosphate ceramic-a resorbable bone implant: review and current status.The Journal of the American Dental Association, 105(6), 1035-1038.
  • Mohanta, K., Kumar, A., Parkash, O., & Kumar, D., 2014. Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. Journal of the European Ceramic Society, 34(10), 2401-2412.
  • Mujeebu, M. A., Abdullah, M., Bakar, M. A., Mohamad, A., & Abdullah, M., 2009. Applications of porous media combustion technology–a review. Applied Energy, 86(9), 1365-1375.
  • Naviroj, M., Miller, S., Colombo, P., & Faber, K., 2015. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232.
  • Nettleship, I., 1996. Applications of porous ceramics. Key Engineering Materials, 122-124, 305-324.
  • Novais, R. M., Seabra, M., & Labrincha, J., 2014. Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. Ceramics International, 40(8), 11637-11648.
  • Ohji, T., & Fukushima, M., 2012. Macro-porous ceramics: processing and properties. International Materials Reviews, 57(2), 115-131.
  • Okada, K., Isobe, T., Katsumata, K.-I., Kameshima, Y., Nakajima, A., & MacKenzie, K.J., 2011. Porous ceramics mimicking nature-preparation and properties of microstructures with unidirectionally oriented pores. Science and Technology of Advanced Materials, 12, 064701.
  • Park, J. S., An, Y. J., Shin, K., Han, J. H., & Lee, C.S., 2015. Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation. RSC Advances, 5(58), 46989-46996.
  • Park, S.-J., Heo, G.-Y., Choi, K.-E., Oh, S.-Y., & Seo, M.-K., 2011. Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites. Carbon Letters, 12(1), 53-56.
  • Pavese, M., Fino, P., Valle, M., & Badini, C., 2006. Preparation of C4 ceramic/metal composites by reactive metal penetration of commercial ceramics. Composites Science and Technology, 66(2), 350-356.
  • Pavese, M., Valle, M., & Badini, C., 2007. Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites. Journal of the European Ceramic Society, 27(1), 131-141.
  • Pezzotti, G., Kamada, I., & Miki, S., 2000. Thermal conductivity of AlN/polystyrene interpenetrating networks. Journal of the European Ceramic Society, 20(8), 1197-1203.
  • Ragosta, G., Abbate, M., Musto, P., Scarinzi, G., & Mascia, L., 2005. Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer, 46(23), 10506-10516.
  • Rittersma, Z., 2002. Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sensors and Actuators A: Physical, 96(2), 196-210.
  • Rodríguez‐Lorenzo, L., Vallet‐Regí, M., & Ferreira, J., 2002. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. Journal of biomedical materials research, 60(2), 232-240.
  • Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., & Watari, K., 2010. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. Journal of Materials Chemistry, 20(14), 2749-2752.
  • Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J., 2016. Gas permeability of ice-templated, unidirectional porous ceramics. Science and Technology of Advanced Materials (just-accepted), 1-29.
  • Studart, A. R., Gonzenbach, U. T., Tervoort, E., & Gauckler, L.J., 2006. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, 89(6), 1771-1789.
  • Suzuki, N., Kiba, S., & Yamauchi, Y., 2011. Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Materials Letters, 65(3), 544-547.
  • Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., & Franzese, S., 2001. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials, 22(11), 1365-1370.
  • Tianchi, W., Dangsheng, X., & Tianle, Z., 2010. Preparation and wear behavior ofcarbon/epoxy resin composites with an interpenetrating network structure derived from natural sponge. Carbon, 48(9), 2435-2441.
  • Tilbrook, M., Moon, R., & Hoffman, M., 2005. On the mechanical properties of alumina–epoxy composites with an interpenetrating network structure. Materials Science and Engineering: A, 393(1), 170-178.
  • Topateş, G., Bilgiç, O., Kalemtaş, A., Aydın, M. T. A., & Özey, N., 2016. Ağ Yapılı Kompozit Malzemelerin Üretiminde Kullanılmak Üzere Gözenekli Si3N4 Seramiklerin Üretimi. Putech & Composites, 3, 23-32.
  • Vitorino, N., Freitas, C., Ribeiro, M., Abrantes, J., & Frade, J., 2015. Porous hollow tubes processed by extrusion of ceramic emulsions. Applied Clay Science, 105, 60-65.
  • Wan, W., Feng, Y., Yang, J., Xu, S., & Qiu, T., 2015. Preparation of mesoporous silica ceramics with relatively high strength from industrial wastes by low-toxic aqueous gel-casting. Journal of the European Ceramic Society, 35(7), 2163-2170.
  • Wang, X., Li, J. T., Xie, M. Y., Qu, L. J., Zhang, P., & Li, X.L., 2015. Structure, mechanical property and corrosion behaviors of (HA + β-TCP)/Mg–5Sn composite with interpenetrating networks. Materials Science and Engineering: C, 56, 386-392.
  • Werner, J., Besser, B., Brandes, C., Kroll, S., & Rezwan, K., 2014. Production of ceramic membranes with different pore sizes for virus retention. Journal of Water Process Engineering, 4, 201-211.
  • Wiecinska, P., & Bachonko, M., 2016. Processing of porous ceramics from highly concentrated suspensions by foaming, in situ polymerization and burn-out of polylactide fibers. Ceramics International, 42(13), 15057-15064.
  • Wu, C. M. L., & Han, G.W., 2007. Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration. Materials Characterization, 58(5), 416-422.
  • Yao, D., Xia, Y., Zeng, Y.-P., Zuo, K.-H., & Jiang, D., 2012. Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 68, 75-77.
  • Yu, H., Li, L., Kido, T., Xi, G., Xu, G., & Guo, F., 2012. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. Journal of Applied Polymer Science, 124(1), 669-677.
  • Zhou, T., Wang, X., Liu, X., & Xiong, D., 2010. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 48(4), 1171-1176.
  • Zhu, B., Wang, J., Ma, J., Wu, J., Yung, K., & Xie, C., 2013. Preparation and properties of aluminum nitride‐filled epoxy composites: Effect of filler characteristics and composite processing conditions. Journal of Applied Polymer Science, 127(5), 3456-3466.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ayşe Kalemtaş

Yayımlanma Tarihi 31 Aralık 2016
Gönderilme Tarihi 7 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 16 Sayı: 3

Kaynak Göster

APA Kalemtaş, A. (2016). Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(3), 734-746.
AMA Kalemtaş A. Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2016;16(3):734-746.
Chicago Kalemtaş, Ayşe. “Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, sy. 3 (Aralık 2016): 734-46.
EndNote Kalemtaş A (01 Aralık 2016) Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 3 734–746.
IEEE A. Kalemtaş, “Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 16, sy. 3, ss. 734–746, 2016.
ISNAD Kalemtaş, Ayşe. “Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/3 (Aralık 2016), 734-746.
JAMA Kalemtaş A. Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:734–746.
MLA Kalemtaş, Ayşe. “Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 16, sy. 3, 2016, ss. 734-46.
Vancouver Kalemtaş A. Nişastayla Konsolidasyon Yöntemiyle Gözenekli Silika Esaslı Seramiklerin Üretimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(3):734-46.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.